Bioinformatic analysis of genomes of commercial breeds of domestic pigs for identification of breed-specific SNPs
https://doi.org/10.29235/1817-7204-2021-59-4-464-476
Abstract
Determining the purebredity of farm animals in a breeding system is of key importance for the entire livestock industry. Purebred breeding of plant breeds is designed to ensure the production of high-value improving breeding material for commercial livestock breeding. Determination of purebredity of pigs can be carried out using single nucleotide polymorphisms (SNP). The multiplexing technology today has reached a level that makes it possible to characterize tens and hundreds of thousands of polymorphic variants simultaneously for hundreds of animals in one run of the device. For the first time, using bioinformatics methods, an analysis of genome-wide projects was carried out for 264 individuals of the species Sus scrofa located in the Sequence Read Archive (NCBI-SRA). The in silico genotype was determined for 692 SNPs, of which 59 SNPs showed a significant potential for differentiation of four commercial breeds: large white (the most significant SNPs are Chr. 6: g.85845403T> G and Chr.16: g.74053569T> C), duroc (Chr. 4: g.55661608A> G, Chr. 14: g.107689091T> C and Chr. 14: g.107939105T> C), landrace (Chr. 5: g.99925204A> G, Chr. 18: g .40100481A> G and Chr. 18: g.7664624A> G) and pietrain (Chr. 13: g.136017764T> C and Chr.17: g.47595840A> G). For breeds of duroc and pietrain pigs, the accuracy of differentiation was at least 99%, for breeds of large white and landrace pigs - over 80%, however, the sensitivity indicator characterizing the percentage of false positive results of classification was slightly over 65%. Creation of models for molecularand-genetic studies of these breeds will allow for a genetic examination of their purebredity, which will contribute to an increase in their breeding value and preservation of the national gene pool.
Keywords
About the Authors
V. N. KipenBelarus
Viachaslau N. Kipen - Ph. D. (Biological)
27, Academicheskaya Str., Minsk 220072
M. E. Mikhailova
Belarus
Mariya E. Mikhailova - Ph. D. (Biology), head of laboratory of animal genetics
27, Academicheskaya Str., Minsk 220072
E. V. Snytkov
Belarus
Evgenij V. Snytkov
27, Academicheskaya Str., Minsk 220072
E. L. Romanishko
Belarus
Elena L. Romanishko
27, Academicheskaya Str., Minsk 220072
E. V. Ivanova
Belarus
Ekaterina V. Ivanova
27, Academicheskaya Str., Minsk 220072
R. I. Sheyko
Belarus
Ruslan I. Sheyko - Corresponding Member of the NAS of Bela rus, D.Sc. (Agricultural), Professor
27, Academicheskaya Str., Minsk 220072
References
1. Korenevskaya P.A. Productivity and biological characteristics of French selection pigs and their crossbreeds. Abstract of Ph.D. diss. M., 2018. 24 p. (in Russian).
2. Ramos A. M., Megens H. J., Crooijmans R.P. M. A., Schook L. B., Groenen M.A. M. Identification of high utility SNPs for population assignment and traceability purposes in the pig using high-throughput sequencing. Animal Genetics, 2011, vol. 42, no. 6, pp. 613-620. https://doi.org/10.1111/j.1365-2052.2011.02198.x
3. Fontanesi L., Schiavo G., Galimberti G., Bovo S., Russo V., Gallo M., Buttazzoni L. A genome-wide association study for a proxy of intermuscular fat level in the Italian Large White breed identifies genomic regions affecting an important quality parameter for dry-cured hams. Animal Genetics, 2017, vol. 48, no. 4, pp. 459-465. https://doi.org/10.1111/age.12542
4. Fontanesi L., Schiavo G., Gallo M., Baiocco C., Galimberti G., Bovo S., Russo V., Buttazzoni L. Genome-wide association study for ham weight loss at first salting in Italian Large White pigs: towards the genetic dissection of a key trait for drycured ham production. Animal Genetics, 2017, vol. 48, no. 1, pp. 103-107. https://doi.org/10.1111/age.12491
5. Zanella R., Peixoto J.O., Cardoso F.F., Cardoso L.L., Biegelmeyer P., Cantão M. E., Otaviano A., Freitas M.S., Caetano A.R., Ledur M.C. Genetic diversity analysis of two commercial breeds of pigs using genomic and pedigree data. Genetics Selection Evolution, 2016, vol. 48, art. 24. https://doi.org/10.1186/s12711-016-0203-3
6. Davoli R., Luise D., Mingazzini V., Zambonelli P., Braglia S., Serra A., Russo V. Genome-wide study on intramuscular fat in Italian Large White pig breed using the PorcineSNP60 BeadChip. Journal of Animal Breeding and Genetics, 2016, vol. 133, no. 4, pp. 277-282. https://doi.org/10.1111/jbg.12189
7. Bergfelder-Drüing S., Grosse-Brinkhaus C., Lind B., Erbe M., Schellander K., Simianer H., Tholen E. A genome-wide association study in large white and landrace pig populations for number piglets born alive. PLoS ONE, 2015, vol. 10, no. 3, p. e0117468. https://doi.org/10.1371/journal.pone.0117468
8. Fontanesi L., Schiavo G., Galimberti G., Calò D.G., Russo V. A genomewide association study for average daily gain in Italian Large White pigs. Journal of Animal Science, 2014, vol. 92, no. 4, pp. 1385-1394. https://doi.org/10.2527/jas.2013-7059
9. Becker D., Wimmers K., Luther H., Hofer A., Leeb T. A genome-wide association study to detect QTL for commercially important traits in Swiss Large White boars. PLoS ONE, 2013, vol. 8, no. 2, p. e55951. https://doi.org/10.1371/journal.pone.0055951
10. Wilkinson S., Archibald A. L., Haley C. S., Megens H. J., Crooijmans R. P., Groenen M. A., Wiener P., Ogden R. Development of a genetic tool for product regulation in the diverse British pig breed market. BMC Genomics, 2012, vol. 13, art. 580. https://doi.org/10.1186/1471-2164-13-580
11. Biffani S., Botti S., Bishop S. C., Stella A., Giuffra E. Using SNP array data to test for host genetic and breed effects on Porcine Reproductive and Respiratory Syndrome Viremia. BMC Proceedings, 2011, vol. 5, suppl. 4, art. S28. https://doi.org/10.1186/1753-6561-5-S4-S28
12. Huang Y., Bates R. O., Ernst C. W., Fix J. S., Steibel J.P. Estimation of U.S. Yorkshire breed composition using genomic data. Journal of Animal Science, 2014, vol. 92, no. 4, pp. 1395-1404. https://doi.org/10.2527/jas.2013-6907
13. Uimari P., Sironen A., Sevón-Aimonen M.L. Whole-genome SNP association analysis of reproduction traits in the Finnish Landrace pig breed. Genetics Selection Evolution, 2011, vol. 43, art. 42. https://doi.org/10.1186/1297-9686-43-42
14. He Y., Li X., Zhang F., Su Y., Hou L., Chen H., Zhang Z., Huang L. Multi-breed genome-wide association study reveals novel loci associated with the weight of internal organs. Genetics Selection Evolution, 2015, vol. 47, art. 87. https://doi.org/10.1186/s12711-015-0168-7
15. Stratz P., Wimmers K., Meuwissen T. H., Bennewitz J. Investigations on the pattern of linkage disequilibrium and selection signatures in the genomes of German Piétrain pigs. Journal of Animal Breeding and Genetics, 2014, vol. 131, no. 6, pp. 473-482. https://doi.org/10.1111/jbg.12107
16. Roberts K. S., Lamberson W.R. Relationships among and variation within rare breeds of swine. Journal of Animal Science, 2015, vol. 93, no. 8, pp. 3810-3813. https://doi.org/10.2527/jas.2015-9001
17. Kipen V. N., Rabcava A. O., Kotava S. A., Zhurina N. V., Handza A. I., Tsybovsky I.S. Polymorphism analysis of MC1R and NR6A1 genes to evaluate the level of introgression of domestic swine (Sus scrofa domesticus) genes in wild boar (Sus scrofa scrofa) population. Molekulyarnaya i prikladnaya genetika: sbornik nauchnykh trudov [Molecular and applied genetics: collection of scientific papers]. Minsk, 2019, vol. 26, pp. 83-95 (in Russian).
18. Kolb A., Linz L. Accurate SNP analysis using the IntelliQube® and duplex BHQplus® genotyping assays with a fast PCR protocol. Annual SLAS conference and exhibition, Washington, DC, Feb. 4–8, 2017. Available at: http://info.biosearchtech.com/hubfs/docs/SLAS%20Poster%20Abstract.pdf (accessed 31.10.2019).
19. Okonechnikov K., Golosova O., Fursov M. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics, 2012, vol. 28, no. 8, pp. 1166-1167. https://doi.org/10.1093/bioinformatics/bts091
20. Davoli R., Braglia S., Valastro V., Annaratone C., Comella M., Zambonelli P., Nisi I., Gallo M., Buttazzoni L., Russo V. Analysis of MC4R polymorphism in Italian Large White and Italian Duroc pigs: association with carcass traits. Meat Science, 2012, vol. 90, no. 4, pp. 887-892. https://doi.org/10.1016/j.meatsci.2011.11.025
21. Choi I., Bates R. O., Raney N. E., Steibel J. P., Ernst C.W. Evaluation of QTL for carcass merit and meat quality traits in a US commercial Duroc population. Meat Science, 2012, vol. 92, no. 2, pp. 132-138. https://doi.org/10.1016/j.meatsci.2012.04.023
22. Sahana G., Kadlecová V., Hornshøj H., Nielsen B., Christensen O.F. A genome-wide association scan in pig identifies novel regions associated with feed efficiency trait. Journal of Animal Science, 2013, vol. 91, no. 3, pp. 1041-1050. https://doi.org/10.2527/jas.2012-5643
23. Okumura N., Matsumoto T., Hayashi T., Hirose K., Fukawa K., Itou T., Uenishi H., Mikawa S., Awata T. Genomic regions affecting backfat thickness and cannon bone circumference identified by genome-wide association study in a Duroc pig population. Animal Genetics, 2013, vol. 44, no. 4, pp. 454-457. https://doi.org/10.1111/age.12018
24. Do D. N., Strathe A. B., Ostersen T., Jensen J., Mark T., Kadarmideen H.N. Genome-wide association study reveals genetic architecture of eating behavior in pigs and its implications for humans obesity by comparative mapping. PLoS One, 2013, vol. 8, no. 8, p. e71509. https://doi.org/10.1371/journal.pone.0071509
25. Jung E. J., Park H. B., Lee J. B., Yoo C. K., Kim B. M., Kim H. I., Kim B. W., Lim H.T. Genome-wide association analysis identifies quantitative trait loci for growth in a Landrace purebred population. Animal Genetics, 2014, vol. 45, no. 3, pp. 442-444. https://doi.org/10.1111/age.12117
26. Sanchez M. P., Tribout T., Iannuccelli N., Bouffaud M., Servin B., Tenghe A., Dehais P., Muller N., Del Schneider M. P., Mercat M. J., Rogel-Gaillard C., Milan D., Bidanel J. P., Gilbert H. A genome-wide association study of production traits in a commercial population of Large White pigs: evidence of haplotypes affecting meat quality. Genetics Selection Evolution, 2014, vol. 46, no. 12, pp. 1-12. https://doi.org/10.1186/1297-9686-46-12
27. Do D. N., Ostersen T., Strathe A. B., Mark T., Jensen J., Kadarmideen H.N. Genome-wide association and systems genetic analyses of residual feed intake, daily feed consumption, backfat and weight gain in pigs. BMC Genetics, 2014, vol. 15, art. 27. https://doi.org/10.1186/1471-2156-15-27
28. Stratz P., Wellmann R., Preuss S., Wimmers K., Bennewitz J. Genome-wide association analysis for growth, muscularity and meat quality in Piétrain pigs. Animal Genetics, 2014, vol. 45, no. 3, pp. 350-356. https://doi.org/10.1111/age.12133
29. Jiao S., Maltecca C., Gray K. A., Cassady J.P . Feed intake, average daily gain, feed efficiency, and real-time ultrasound traits in Duroc pigs: II. Genome-wide association. Journal of Animal Science, 2014, vol. 92, no. 7, pp. 2846-2860. https://doi.org/10.2527/jas.2013-7337
30. Sevillano C. A., Lopes M. S., Harlizius B., Hanenberg E. H., Knol E. F., Bastiaansen J.W. Genome-wide association study using deregressed breeding values for cryptorchidism and scrotal/inguinal hernia in two pig lines. Genetics Selection Evolution, 2015, vol. 47, art. 18. https://doi.org/10.1186/s12711-015-0096-6
31. Howard J. T., Jiao S., Tiezzi F., Huang Y., Gray K. A., Maltecca C. Genome-wide association study on legendre random regression coefficients for the growth and feed intake trajectory on Duroc Boars. BMC Genetics, 2015, vol. 16, art. 59. https://doi.org/10.1186/s12863-015-0218-8
32. Wang K., Liu D., Hernandez-Sanchez J., Chen J., Liu C., Wu Z., Fang M., Li N. Genome wide association analysis reveals new production trait genes in a male Duroc population. PLoS One, 2015, vol. 10, no. 9, p. e0139207. https://doi.org/10.1371/journal.pone.0139207
33. Abella G., Pena R.N., Nogareda C., Armengol R., Vidal A., Moradell L., Tarancon V., Novell E., Estany J., Fraile L. A WUR SNP is associated with European Porcine Reproductive and Respiratory Virus Syndrome resistance and growth performance in pigs. Research in Veterinary Science, 2016, vol. 104, pp. 117-122. https://doi.org/10.1016/j.rvsc.2015.12.014
34. Sato S., Uemoto Y., Kikuchi T., Egawa S., Kohira K., Saito T., Sakuma H., Miyashita S., Arata S., Kojima T., Suzuki K. SNP- and haplotype-based genome-wide association studies for growth, carcass, and meat quality traits in a Duroc multigenerational population. BMC Genetics, 2016, vol. 17, art. 60. https://doi.org/10.1186/s12863-016-0368-3
35. Motsinger A.A., Ritchie M.D. Multifactor dimensionality reduction: An analysis strategy for modelling and detecting gene - gene interactions in human genetics and pharmacogenomics studies. Human Genomics, 2006, vol. 2, no. 5, pp. 318-328. https://doi.org/10.1186/1479-7364-2-5-318
36. Sheyko I.P., Sheyko R.I., Timoshenko T.N. Belarusian inbreed type of pigs in Duroc breed. Vestsі Natsyyanal’nai akademіі navuk Belarusі. Seryya agrarnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Agrarian series, 2016, no. 2, pp. 92-97 (in Russian).