Preview

Plant-based bacterial starter culture Latilactobacillus sakei

https://doi.org/10.29235/1817-7204-2025-63-3-253-264

Abstract

Milk whey is widely used as a main component for a nutrient medium for the production of bacterial starter cultures, but in recent years, bacterial cultures produced from plant-based components have great scientific interest. Lactic acid bacteria strains are often used to create probiotic bacterial cultures. In this regard, the aim of the present study is to develop a technology for the production of a plant-based bacterial starter culture containing Latilactobacillus sakei. The objects of experimental studies were three strains Latilactobacillus sakei, and starter cultures made with the use of these strains. For the cultivation of lactic acid bacteria, MRS medium and a specially developed nutrient medium based on rice flour were used. The growth of Latilactobacillus sakei strains on these media was assessed by the number of viable cells. It has been proved that the new plant-based ingredients nutrient medium allows to obtain bacterial starters with good quality and safety indicators. In terms of safety indicators, they meet the requirements of the Technical Regulation of Customs Union 033/2013 “On the safety of milk and dairy products” and contain a high number of viable cells of lactic acid bacteria (at least 108 CFU/cm3). As a result of the study, new technologies have been developed for the production of liquid and frozen plant-based bacterial starter cultures containing Latilactobacillus sakei strains, which can be used in the production of food products.

About the Authors

A. P. Nikiforova
ITMO University
Russian Federation

Anna P. Nikiforova – Ph. D. (Engineering), Associate Professor of the Department of Biotechnologies

49, bldg. A, Kronverksky Ave., 197101, St. Petersburg



V. M. Poznyakovsky
Kemerovo State Medical University
Russian Federation

Valery M. Poznyakovsky – Dr. Sc. (Biology), Professor

22a, Voroshilova St., 650056, Kemerovo



References

1. Kerry R. G., Patra J. K., Gouda S., Park Y., Shin H.-S., Das G. Benefaction of probiotics for human health: a review. Journal of Food and Drug Analysis, 2018, vol. 26, no. 3, pp. 927–939. https://doi.org/10.1016/j.jfda.2018.01.002

2. Bodke H., Jogdand S. Role of probiotics in human health. Cureus, 2022, vol. 14, no. 11, art. e31313. https://doi.org/10.7759/cureus.31313

3. Shi J., Ma D., Gao S., Long F., Wang X., Pu X., Cannon R. D., Han T. L. Probiotic Escherichia coli Nissle 1917-derived outer membrane vesicles modulate the intestinal microbiome and host gut-liver metabolome in obese and diabetic mice. Frontiers in Microbiology, 2023, vol. 14, art. 1219763. https://doi.org/10.3389/fmicb.2023.1219763

4. Nami Y., Vaseghi Bakhshayesh R., Mohammadzadeh Jalaly H., Lotfi H., Eslami S., Hejazi M. A. Probiotic properties of enterococcus isolated from artisanal dairy products. Frontiers in Microbiology, 2019, vol. 10, art. 300. https://doi.org/10.3389/fmicb.2019.00300

5. Gopalan S., Ganapathy S., Mitra M., Neha, Kumar Joshi D., Veligandla K. C., Rathod R., Kotak B. P. Unique properties of yeast probiotic Saccharomyces boulardii CNCM I-745: a narrative review. Cureus, 2023, vol. 15, no. 10, art. e46314. https://doi.org/10.7759/cureus.46314

6. Staniszewski A., Kordowska-Wiater M. Probiotic and potentially probiotic yeasts-characteristics and food application. Foods, 2021, vol. 10, no. 6, art. 1306. https://doi:10.3390/foods10061306

7. Ayivi R. D., Gyawali R., Krastanov A., Aljaloud S. O., Worku M., Tahergorabi R., Da Silva R. C., Ibrahim S. A. Lactic acid bacteria: food safety and human health applications. Dairy, 2020, vol. 1, no. 3, pp. 202–232. https://doi.org/10.3390/dairy1030015

8. Rama G. R., Kuhn D., Beux S., Jachetti Maciel M., Volken de Souza C. F. Potential applications of dairy whey for the production of lactic acid bacteria cultures. International Dairy Journal, 2019, vol. 98, pp. 25–37. https://doi.org/10.1016/j.idairyj.2019.06.012

9. Zommara M., El-Ghaish S., Haertle T., Chobert J.-M., Ghanimah M. Probiotic and technological characterization of selected Lactobacillus strains isolated from different Egyptian cheeses. BMC Microbiology, 2023, vol. 23, art. 160. https://doi.org/10.1186/s12866-023-02890-1

10. Song E. J., Lee E. S., Park S. L., Choi H. J., Roh S. W., Nam Y. D. Bacterial community analysis in three types of the fermented seafood, jeotgal, produced in South Korea. Bioscience, Biotechnology and Biochemistry, 2018, vol. 82, no. 8, pp. 1444–1454. https://doi.org/10.1080/09168451.2018.1469395

11. Skåra T., Axelsson L., Stefansson G., Ekstrand B., Hagen H. Fermented and ripened fish products in the northern European countries. Journal of Ethnic Foods, 2015, vol. 2, no. 1, pp. 18–24. https://doi.org/10.1016/j.jef.2015.02.004

12. Zagorec M., Champomier-Vergès M.-C. Lactobacillus sakei: a starter for sausage fermentation, a protective culture for meat products. Microorganisms, 2017, vol. 5, no. 3, art. 56. https://doi.org/10.3390/microorganisms5030056

13. Nikiforova A. P., Khazagaeva S. N., Khamagaeva I. S. Tolerance of Lactobacillus sakei to osmotic stress. Tekhnika i tekhnologiya pishchevykh proizvodstv = Food Processing: Techniques and Technology, 2021, vol. 51, no. 3, pp. 574–583 (in Russian). https://doi.org/10.21603/2074-9414-2021-3-574-583

14. Heenan C. N., Adams M. C., Hosken R. W., Fleet G. H. Growth medium for culturing probiotic bacteria for applications in vegetarian food products. LWT – Food Science and Technology, 2002, vol. 35, no. 2, pp. 171–176. https://doi.org/10.1006/fstl.2001.0833

15. Pathak M., Martirosyan D. Optimization of an effective growth medium for culturing probiotic bacteria for applications in strict vegetarian food products. Functional Foods in Health and Disease, 2012, vol. 2, no. 10, pp. 369–378. https://doi.org/10.31989/ffhd.v2i10.75

16. Parecha D., Alfano A., Cimini D., Schiraldi C. Vegan grade medium component screening and concentration optimization for the fermentation of the probiotic strain Lactobacillus paracasei IMC 502® using Design of Experiments. Journal of Industrial Microbiology and Biotechnology, 2024, vol. 51, art. kuae016. https://doi.org/10.1093/jimb/kuae016

17. Youssef H. H., Hamza M. A., Fayez M., Mourad E. F., Saleh M. Y., Sarhan M. S., Suker R. M., Eltahlawy A. A., Nemr R. A., El-Tahan M., Ruppel S., Hegazi N. A. Plant-based culture media: efficiently support culturing rhizobacteria and correctly mirror their in-situ diversity. Journal of Advanced Research, 2016, vol. 7, no. 2, pp. 305–316. https://doi.org/10.1016/j.jare.2015.07.005

18. Jaramillo L., Santos D., Borges E., Dias D., Pereira N. Low-cost effective culture medium optimization for d-lactic acid production by Lactobacillus coryniformis subsp. torquens under oxygen-deprived condition. Annals of Microbiology, 2018, vol. 68, no. 9, pp. 547–555. https://doi.org/10.1007/s13213-018-1362-y

19. Kumar V., Naik B., Kumar A., Khanduri N., Rustagi S., Kumar S. Probiotics media: significance, challenges, and future perspective – a mini review. Food Production, Processing and Nutrition, 2022, vol. 4, art. 17. https://doi.org/10.1186/s43014-022-00098-w

20. Mamykin D. S. Optimization of the composition of the nutrient medium for production of starter cultures Lactobacillus plantarum. Pishchevye sistemy = Food Systems, 2021, vol. 4, no. 3S, pp. 193–198 (in Russian). https://doi.org/10.21323/261897712021-4-3S-193-198

21. Malvido M. C., González E. A., Bazán Tantaleán D. L., Bendaña Jácome R. J., Pérez Guerra N. Batch and fed-batch production of probiotic biomass and nisin in nutrient-supplemented whey media. Brazilian Journal of Microbiology, 2019, vol. 50, no. 4, pp. 915–925. https://doi.org/10.1007/s42770-019-00114-1

22. Khamagaeva I. S., Kachanina L. M., Tumurova S. M. Biotechnology of propionic acid bacteria starter cultures. Ulan-Ude, East Siberian State Technological University, 2006. 171 p. (in Russian).

23. Amadoro C., Rossi F., Piccirilli M., Colavita G. Features of Lactobacillus sakei isolated from Italian sausages: focus on strains from Ventricina del Vastese. Italian Journal of Food Safety, 2015, vol. 4, no. 4, art. 5449. https://doi.org/10.4081/ijfs.2015.5449

24. Obst M., Hehn R., Vogel R. F., Hammes W. P. Lactose metabolism in Lactobacillus curvatus and Lactobacillus sake. FEMS Microbiology Letters, 1992, vol. 97, no. 3, pp. 209–214. https://doi.org/10.1111/j.1574-6968.1992.tb05465.x

25. Lv X., Liu G., Sun X., Chen H., Sun J., Feng Z. Short communication: Nutrient consumption patterns of Lactobacillus acidophilus KLDS 1.0738 in controlled pH batch fermentations. Journal of Dairy Science, 2017, vol. 100, no. 7, pp. 5188– 5194. https://doi.org/10.3168/jds.2017-12607

26. Khamagaeva I. S., Khazagaeva S. N., Maradudina I. P. Optimization of nutrient medium for obtaining hypoallergic bio-product. Vestnik VSGUTU = ESSUTM Bulletin, 2017, no. 3 (66), pp. 93–96 (in Russian).

27. Jukonyte R., Zadeike D., Bartkiene E., Lele V., Cernauskas D., Suproniene S., Juodeikiene G. A potential of brown rice polish as a substrate for the lactic acid and bioactive compounds production by the lactic acid bacteria newly isolated from cereal-based fermented products. LWT, 2018, vol. 9, pp. 323–331. https://doi.org/10.1016/j.lwt.2018.07.012

28. Widenmann A. W., Schiffer C. J., Ehrmann M. A., Vogel R. F. Impact of different sugars and glycosyltransferases on the assertiveness of Latilactobacillus sakei in raw sausage fermentations. International Journal of Food Microbiology, 2022, vol. 366, art. 109575. https://doi.org/10.1016/j.ijfoodmicro.2022.109575

29. Cheng Z., Yan X., Wu J., Weng P., Wu Z. Effects of freeze drying in complex lyoprotectants on the survival, and membrane fatty acid composition of Lactobacillus plantarum L1 and Lactobacillus fermentum L2. Cryobiology, 2022, vol. 105, pp. 1–9. https://doi.org/10.1016/j.cryobiol.2022.01.003

30. Kwon Y. W., Bae J. H., Kim S. A., Han N. S. Development of freeze-thaw tolerant Lactobacillus rhamnosus GG by adaptive laboratory evolution. Frontiers in Microbiology, 2018, vol. 9, art. 2781. https://doi.org/10.3389/fmicb.2018.02781

31. Oleskin A. V. Biosocial phenomena in unicellular organisms (exemplified by data concerning Prokaryota). Zhurnal obshchei biologii = Journal of General Biology, 2009, vol. 70, no. 3, pp. 225–238 (in Russian).

32. Trunk T., Khalil H.S., Leo J. C. Bacterial autoaggregation. AIMS Microbiology, 2018, vol. 4, no. 1, pp. 140–164. https://doi.org/10.3934/microbiol.2018.1.140

33. Urcan A. C., Criste A. D., Bobiș O., Cornea-Cipcigan M., Giurgiu A.-I., Dezmirean D. S. Evaluation of functional properties of some lactic acid bacteria strains for probiotic applications in apiculture. Microorganisms, 2024, vol. 12, no. 6, art. 1249. https://doi.org/10.3390/microorganisms12061249


Review

Views: 329


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1817-7204 (Print)
ISSN 1817-7239 (Online)