Transgenic rabbits with genes of human granulocyte colony-stimulating factor and green fluorescent protein
https://doi.org/10.29235/1817-7204-2025-63-1-45-57
Abstract
Human granulocyte–colony stimulating factor (GCSF) is one of the pharmacological proteins that can be isolated from the milk of transgenic (TG) animals. The plasmid containing the human GCSF gene under the control of regulatory elements of the bovine β-lactoglobulin gene and the reporter green fluorescent protein (EGFP) gene under the cytomegalovirus (cmv) promoter were obtained. The use of the selected promoters ensures tissue-specific expression of the target protein in the mammary gland of the TG producing animal and a high level of early expression of the reporter protein in eukaryotic cells, which makes it possible to detect TG embryos at the cultivation stage and perform their preimplantation selection. Testing of the gene construct effectiveness was carried out on TG rabbits obtained by microinjection into the male pronucleus of zygotes. It was concluded that GFP is toxic to embryos in the early stages of development due to overexpression of the EGFP gene under a strong cmv promoter. The TG female rabbit (F0) was obtained, in which the level of human GKSF in milk and blood serum was assessed by the ELISA method. Of the 22 baby rabbits obtained from her in four kindling, two were transgenic. Offspring (F1) was obtained from the TG male F0, 56 % of which were males, of which 88 % were TG and did not differ from ordinary rabbits in terms of health. Among females, TG was 10 %, and they died within two weeks after birth.
About the Authors
E. M. KoloskovaRussian Federation
Elena M. Koloskova – Ph. D. (Biology), Senior Re searcher at the Laboratory of Digestion
249013, v. Institut, Borovsk, Kaluga Region
V. A. Ezerskij
Russian Federation
Vadim A. Ezerskij – Junior Researcher at the Laboratory of Microbiology and Immunobiotechnology
249013, v. Institut, Borovsk, Kaluga Region
T. P. Trubitsina
Russian Federation
Tatjana P. Trubitsina – Ph. D. (Biology), Specialist at the Laboratory of Microbiology and Immunobiotechnology
249013, v. Institut, Borovsk, Kaluga Region
O. B. Zhukova
Russian Federation
Olga B. Zhukova – Researcher at the Laboratory of Microbiology and Immunobiotechnology
249013, v. Institut, Borovsk, Kaluga Region
K. S. Ostrenko
Russian Federation
Konstantin S. Ostrenko – Dr. Sc. (Biology), Head of the Laboratory of Microbiology and Immunobiotechnology
249013, v. Institut, Borovsk, Kaluga Region
N. V. Belova
Russian Federation
Nadezhda V. Belova – Ph. D. (Biology), Researcher at the Laboratory of Microbiology and Immunobiotechnology
249013, v. Institut, Borovsk, Kaluga Region
I. V. Kutijn
Russian Federation
Ivan V. Kutijn – Researcher at the Laboratory of Microbiology and Immunobiotechnology
249013, v. Institut, Borovsk, Kaluga Region
V. P. Ryabykh
Russian Federation
Vladimir P. Ryabykh – Dr. Sc. (Biology), Professor
249013, v. Institut, Borovsk, Kaluga Region
References
1. Kues W. A., Niemann H. Advances in farm animal transgenesis. Preventive Veterinary Medicine, 2011, vol. 102, no. 2, pp. 146–156. https://doi.org/10.1016/j.prevetmed.2011.04.009
2. Bertolini L. R., Meade H., Lazzarotto C. R., Martins L. T., Tavares K. C., Bertolini M., Murray J. D. The transgenic animal platform for biopharmaceutical production. Transgenic Research, 2016, vol. 25, no. 3, pp. 329–343. https://doi.org/10.1007/s11248-016-9933-9
3. Castro F. O., Limonta J., Rodriguez A., Aguirre A., de la Fuente J., Aguilar A., Ramos B., Hayes O. Transgenic rabbits for the production of biologically-active recombinant proteins in the milk. Genetic Analysis: Biomolecular Engineering, 1999, vol. 15, no. 3–5, pp. 179–187. https://doi.org/10.1016/s1050-3862(99)00024-8
4. Koloskova E. M., Karkischenko V. N., Yezersky V. A., Petrova N. V., Maksimenko S. V., Matveyenko E. L. Rabbit biomodels of human diseases developed using new genomic technologies. CRISPR/Cas9 (review). Biomeditsina = Journal Biomed, 2019, vol. 15, no. 4, pp. 12–33 (in Russian). https://doi.org/10.33647/2074-5982-15-4-12-33
5. Miroshnichenko L. A., Shdanov V. V., Zyuz’kov G. N., Simanina E. V., Stavrova L. A., Udut E. V., Khrichkova T. Y., Minakova M. Y., Goldberg V. E., Dygai A. M. Mechanisms of hemostimulating effects of granulocytic CSF and pantohematogen under conditions of cytostatic myelosuppression. Bulletin of Experimental Biology and Medicine, 2011, vol. 150, no. 6, pp. 702–706. https://doi.org/10.1007/s10517-011-1228-9
6. Nguyen C., Niauri D. A., Tapilskaya N. I., Gzgzyan A. M. Possibilities of using granulocyte colony-stimulating factor in reproductive medicine. A literature review. Journal of Obstetrics and Women’s Diseases, 2021, vol. 70, no. 2, pp. 119–128. https://doi.org/10.17816/JOWD43587
7. Metcalf D., Nicola N. A. Biochemistry of the colony-stimulating factors. The hematopoietic colony-stimulating factors. From biology to clinical applications. Cambridge [etc.], 1995, pp. 44–64. https://doi.org/10.1017/cbo9780511663376.005
8. Skrypnik K. A., Kosorukov V. S. Human granulocyte-colony stimulating factor as a new therapeutic agent in clinic. Rossiiskii bioterapevticheskii zhurnal = Russian Journal of Biotherapy, 2011, vol. 10, no. 2, pp. 19–24 (in Russian).
9. Avdeeva Zh. I., Soldatov A. A., Alpatova N. A., Kiselevsky M. V., Lysikova S. L., Bondarev V. P., Medunitsyn N. V., Mosyagin V. D., Merkulov V. A., Mironov A. N. Recombinant granulocyte colony stimulating factor biosimilars. Quality assessment. Biopreparaty. Profilaktika, diagnostika, lechenie = Biological Products. Prevention, Diagnosis, Treatment, 2015, no. 1 (53), pp. 4–14 (in Russian).
10. Ko J. H., Lee C. S., Kim K. H., Pang M. G., Koo J. S., Fang N., Koo D. B., Oh K. B., Youn W. S., Zheng G. D., Park J. S., Kim S. J., Han Y. M., Choi I. Y., Lim J., Shin S. T., Jin S. W., Lee K. K., Yoo O. J. Production of biologically active human granulocyte colony stimulating factor in the milk of transgenic goat. Transgenic Research, 2000, vol. 9, no. 3, pp. 215–222. https://doi.org/10.1023/a:1008972010351
11. Dvoryanchikov G. A., Serova I. A., Dias L. P. B., Serov O. L., Andreeva L. E., Azevedo S. Secretion of biologically active human granulocyte colony-stimulating factor (G-CSF) in milk of transgenic mice. Russian Journal of Genetics, 2005, vol. 41, no. 10, pp. 1088–1094. https://doi.org/10.1007/s11177-005-0204-8
12. Serova I. A., Dvoryanchikov G. A., Andreeva L. E., Burkov I. A., Dias L. P., Battulin N. R., Smirnov A. V., Serov O. L. A 3,387 bp 5′-flanking sequence of the goat alpha-S1-casein gene provides correct tissue-specific expression of human granulocyte colony-stimulating factor (hG-CSF) in the mammary gland of transgenic mice. Transgenic Research, 2012, vol. 21, no. 3, pp. 485–498. https://doi.org/10.1007/s11248-011-9547-1
13. Freitas V. J. F., Serova I. A., Moura R. R., Andreeva L. E., Melo L. M., Teixeira D. I. A., Pereira A. F., Lopes-Jrd E. S., Diase L. P. B., Nunes-Pinheirof D. C. S., Sousa F. C., Alcantara-Neto A. S., Albuquerque E. S., Melo C. H. S., Rodrigues V. H. V., Batista R. I. T., Dvoryanchikov G. A., Serov O. L. The establishment of two transgenic goat lines for mammary gland hG-CSF expression. Small Ruminant Research, 2012, vol. 105, pp. 105–113. https://doi.org/10.1016/j.smallrumres.2012.03.009
14. Uusi-Oukari M., Hyttinen J. M., Korhonen V. P., Västi A., Alhonen L., Jänne O. A., Jänne J. Bovine alpha s1-casein gene sequences direct high level expression of human granulocyte-macrophage colony-stimulating factor in the milk of transgenic mice. Transgenic Research, 1997, vol. 6, no. 1, pp. 75–84. https://doi.org/10.1023/a:1018461201385
15. Burkov I. A., Serova I. A., Battulin N. R., Smirnov A.V., Babkin I. V., Andreeva L. E., Dvoryanchikov G. A., Serov O. L. Expression of the human granulocyte-macrophage colony stimulating factor (hGM-CSF) gene under control of the 5′-regulatory sequence of the goat alpha-S1-casein gene with and without a MAR element in transgenic mice. Transgenic Research, 2013, vol. 22, no. 5, pp. 949–964. https://doi.org/10.1007/s11248-013-9697-4
16. Samoylov A. V., Kesyan A. Z., Suraeva N. M. Development of transgenic chicken with a gene of human granulocyte colony-stimulating factor using sperm-mediated gene transfer. Biology Bulletin, 2013, vol. 40, no. 5, pp. 419–422. https://doi.org/10.1134/s1062359013040134
17. Rosochacki S. J., Kozikova L. V., Korwin-Kossakowski M., Matejczyk M., Połoszynowicz J., Duszewska A. M. Noninvasive fluorescent screening of microinjected bovine embryos to predict transgene integration. Folia Biologica (Krakow), 2003, vol. 5, no. 1–2, pp. 97–104.
18. Kato M., Yamanouchi K., Ikawa M., Okabe M. Efficient selection of transgenic mouse embryos using EGFP as a marker gene. Molecular Reproduction and Development, 1999, vol. 54, no. 1, pp. 43–48. https://doi.org/10.1002/(sici)10982795(199909)54:1<43::aid-mrd6>3.0.co;2-n
19. Zimmer M. GFP: from jellyfish to the Nobel prize and beyond. Chemical Society Reviews, 2009, vol. 38, no. 10, pp. 2823–2832. https://doi.org/10.1039/b904023d
20. Garcia-Diaz A. I., Moyon B., Coan P. M., Alfazema N., Venda L., Woollard K., Aitman T. New Wistar Kyoto and spontaneously hypertensive rat transgenic models with ubiquitous expression of green fluorescent protein. Disease Models & Mechanisms, 2016, vol. 9, no. 4, pp. 463–471. https://doi.org/10.1242/dmm.024208
21. Shetty G., Wu Z., Lam T. N. A., Phan T. T., Orwig K. E., Meistrich M. L. Effect of hormone modulations on donorderived spermatogenesis or colonization after syngeneic and xenotransplantation in mice. Andrology, 2019, vol. 7, no. 2, pp. 257–265. https://doi.org/10.1111/andr.12571
22. Hirakata E., Tomita N., Tamada Y., Suguro T., Nakajima M., Kambe Y., Yamada K., Yamamoto K., Kawakami M., Otaka A., Okumura H., Suzuki S. Early tissue formation on whole-area osteochondral defect of rabbit patella by covering with fibroin sponge. Journal of Biomedical Materials Research. Part B: Applied Biomaterials, 2016, vol. 104, no. 7, pp. 1474– 1482. https://doi.org/10.1002/jbm.b.33656
23. Katter K., Geurts A. M., Hoffmann O., Mates L., Landa V., Hiripi L. [et al.]. Transposon-mediated transgenesis, transgenic rescue, an tissue-specific gene expression in rodents and rabbits. The FASEB Journal, 2013, vol. 27, no. 3, pp. 930–941. https://doi.org/10.1096/fj.12-205526
24. Takahashi R., Kuramochi T., Aoyagi K., Hashimoto S., Miyoshi I., Kasai N., Hakamata Y., Kobayashi E., Ueda M. Establishment and characterization of CAG/EGFP transgenic rabbit line. Transgenic Research, 2007, vol. 16, no. 1, pp. 115– 120. https://doi.org/10.1007/s11248-006-9043-1
25. Murakami T., Kobayashi S. GFP-transgenic animals for in vivo imaging: rats, rabbits, and pigs. In vivo cellular imaging using fluorescent proteins: methods and protocols. Methods in Molecular Biology. Vol. 872. New York, 2012, pp. 177–189. https://doi.org/10.1007/978-1-61779-797-2_12
26. Ezerskii V. A., Ivanova L. B., Shevchenko V. G. Gene-engineering construction containing human gene G-CSF under control of regulatory elements of bovine gene β-lactoglobulin. Problemy biologii productivnykh zhivotnykh = Problems of Productive Animal Biology, 2007, no. 1, pp. 123–131 (in Russian).
27. Ezerskii V. A., Koloskova E. M., Trubitsina T. P., Maksimenko S. V., Ryabykh V. P. Genetic engineering structure comprising a coding sequence of human G-CSF with the regulatory regions of bovine β-lactoglobulin gene and reporter gene EGFP. Problemy biologii productivnykh zhivotnykh = Problems of Productive Animal Biology, 2018, no. 3, pp. 35–44 (in Russian). https://doi.org/10.25687/1996-6733.prodanimbiol.2018.3.35-44
28. Chrenek P., Bauer M., Makarevich A.V. Quality of transgenic rabbit embryos with different EGFP gene constructs. Zygote, 2011, vol. 19, no. 1, pp. 85–90. https://doi.org/10.1017/S0967199410000109
29. Boshart M., Weber F., Jahn G., Dorsch-Häsler K., Fleckenstein B., Schaffner W. A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell, 1985, vol. 41, no. 2, pp. 521–530. https://doi.org/10.1016/s0092-8674(85)80025-8
30. Birch J. R., Racher A. J. Antibody production. Advanced Drug Delivery Reviews, 2006, vol. 58, no. 5–6, pp. 671–685. https://doi.org/10.1016/j.addr.2005.12.006
31. Khan K. H. Gene expression in Mammalian cells and its applications. Advanced Pharmaceutical Bulletin, 2013, vol. 3, no. 2, pp. 257–263. https://doi.org/10.5681/apb.2013.042
32. Lipták N., Bősze Z., Hiripi L. GFP transgenic animals in biomedical research: a review of potential disadvantages. Physiological Research, 2019, vol. 68, no. 4, pp. 525–530. https://doi.org/10.33549/physiolres.934227
33. Serov O. L. Transgenic animals: basic and applied aspects. Vavilovskii zhurnal genetiki i selektsii = Vavilov Journal of Genetics and Breeding, 2013, vol. 17, no. 4/2, pp. 1055–1064 (in Russian).
34. Tevkin S. I., Shishimorova M. S., Ezerskii V. А., Trubitsina T. P., Fatkulina О. B., Ryabykh V. P. Integration effeciency of the human lactoferrin gene in the mouse and rabbit genom. Sel’skokhozyaistvennaya biologiya = Agricultural Biology, 2009, vol. 44, no. 2, pp. 55–61 (in Russian).