Preview

Proceedings of the National Academy of Sciences of Belarus. Agrarian Series

Advanced search

Molecular screening of anthracnose resistance allele Rca2 in strawberry varieties and selected forms

https://doi.org/10.29235/1817-7204-2025-63-1-35-44

Abstract

Anthracnose (Colletotrichum acutatum) is a dangerous strawberry disease. In the Eurasian Economic Union, C. acutatum is a quarantine pathogen. Therefore, an important aim is identification and creation of new strawberry forms with genetically determined resistance. Use of diagnostic DNA markers of target genes’ resistance alleles will increase reliability of identification and effectiveness of breeding process. The purpose of this study was molecular screening of anthracnose resistance allele Rca2 in strawberry varieties and selected seedlings to identify forms with genetically determined resistance to C. acutatum. The objects of the study were 1st variety of strawberry hybrids (F. × anashata Kantor.) and 53 genotypes of garden strawberry (F. × ananassa Duch.): 38 varieties and 16 selected forms. Molecular screening of Rca2 resistance allele was carried out using the DNA marker STS-Rca2_240. To control the PCR progress, the marker STS-Rca2_240 was multiplexed with the marker EMFv020. As a result of the analysis, the marker fragment of the Rca2 gene was identified in 14 (25.9 %) of the 54 analyzed strawberry samples. Among the strawberry varieties, the marker is present in 8 forms (21.1 %), and among the selected forms – in 6 samples (37.5 %). In the remaining analyzed strawberry samples, Rca2 gene is represented by the rca2 allele in homozygous state. Among the Russian strawberry varieties, the Rca2 gene is present in the variety of Dar (heterozygous combination of alleles). Among the foreign strawberry forms, Rca2 gene was identified in the varieties of Aprica, Florence, Laetitia, Malwina, Monterey, Portola and Selva (homozygous (Rca2 allele) or heterozygous combination of alleles). Among the analyzed strawberry selected forms, Rca2 gene in heterozygous form was identified in hybrids 2/1-24 (Quicky × Olympia), 3/9-28 (Florence × Faith), 4/7-10, 4/7-19 (Asia × Aprica), and 5/2-26, 5/2-32 (San Andreas × Monterey). These genotypes are genetic sources of resistance to anthracnose and can be used in marker-assisted breeding. 

About the Authors

A. S. Lyzhin
I. V. Michurin Federal Science Center
Russian Federation

Alexander S. Lyzhin – Ph. D. (Agriculture), Leading Researcher

30, Michurin Str., 393774, Michurinsk, Tambov Region



I. V. Luk’yanchuk
I. V. Michurin Federal Science Center
Russian Federation

Irina V. Luk’yanchuk – Ph. D. (Agriculture), Leading Researcher

30, Michurin Str., 393774, Michurinsk, Tambov Region



References

1. Folta K. M., Davis T. M. Strawberry genes and genomics. Critical Reviews in Plant Sciences, 2006, vol. 25, no. 5, pp. 399–415. https://doi.org/10.1080/07352680600824831

2. Luk’yanchuk I. V. Complex resistance of strawberries to white and brown spots. Plodovodstvo i yagodovodstvo Rossii = = Pomiculture and Small Fruits Culture in Russia, 2013, vol. 36, no. 1, pp. 366–369 (in Russian).

3. Kholod N. А. Strawberry diseases in the South of Russia. Zashchita i karantin rastenii = Plant Protection and Quarantine, 2013, no. 10, pp. 28–30 (in Russian).

4. Ahmed M. F. A., El-Fiki I. A. I. Effect of biological control of root rot diseases of strawberry using Trichoderma spp. Middle East Journal of Applied Sciences, 2017, vol. 7, no. 3, pp. 482–492.

5. Petrasch S., Knapp S. J., van Kan J. A. L., Blanco-Ulate B. Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea. Molecular Plant Pathology, 2019, vol. 20, no. 6, pp. 877–892. https://doi.org/10.1111/mpp.12794

6. Smith B. J. Epidemiology and pathology of strawberry anthracnose: a North American perspective. HortScience, 2008, vol. 43, no. 1, pp. 69–73.

7. Damm U., Cannon P. F., Woudenberg J. H. C., Crous P. W. The Colletotrichum acutatum species complex. Studies in Mycology, 2012, vol. 73, no. 1, pp. 37–113. https://doi.org/10.3114/sim0010

8. Karimi K., Arzanlou M., Pertot I. Weeds as potential inoculum reservoir for Colletotrichum nymphaeae causing strawberry anthracnose in Iran and Rep-PCR fingerprinting as useful marker to differentiate C. acutatum complex on strawberry. Frontiers in Microbiology, 2019, vol. 10, art. 129. https://doi.org/10.3389/fmicb.2019.00129

9. Kuznetsova A. A., Dudchenko I. P., Kopina M. B. Strawberry anthracnose, classical and modern diagnostic methods. Sovremennye podkhody i metody v zashchite rastenii: materialy Vserossiiskoi nauchno-prakticheskoi konferentsii s mezhdunarodnym uchastiem, Ekaterinburg, 12–14 noyabrya 2018 g. [Modern approaches and methods in plant protection: materials of the All-Russian scientific and practical conference with international participation, Ekaterinburg, November 12–14, 2018]. Ekaterinburg, 2018, pp. 70–73 (in Russian).

10. Chung P.-C., Wu H.-Y., Wang Y.-W., Ariyawansa H. A., Hu H.-P., Hung T.-H., Tzean S.-S., Chung C.-L. Diversity and pathogenicity of Colletotrichum species causing strawberry anthracnose in Taiwan and description of a new species, Colletotrichum miaoliense sp. nov. Scientific Reports, 2020, vol. 10, no. 1, art. 14664. https://doi.org/10.1038/s41598-02070878-2

11. Salinas N., Fan Z., Peres N., Lee S., Whitaker V. M. FaRCa1 confers moderate resistance to the root necrosis form of strawberry anthracnose caused by Colletotrichum acutatum. HortScience, 2020, vol. 55, no. 5, pp. 693–698. https://doi.org/10.21273/HORTSCI14807-20

12. Holod N. А., Kashchits Yu. P., Dobrenkov E. A., Semenova L. G. Evaluation of stability of strawberry varieties to anthracnose black rot in the southern region. Plodovodstvo i vinogradarstvo Yuga Rossii = Fruit Growing and Viticulture of South Russia, 2018, no. 51 (3), pp. 140–148 (in Russian). https://doi.org/10.30679/2219-5335-2018-3-51-140-148

13. Marian M., Ohno T., Suzuki H., Kitamura H., Kuroda K., Shimizu M. A novel strain of endophytic Streptomyces for the biocontrol of strawberry anthracnose caused by Glomerella cingulate. Microbiological Research, 2020, vol. 234, art. 126428. https://doi.org/10.1016/j.micres.2020.126428

14. Zhang X., Batzer J. C., Li X., Peres N. A., Gleason M. L. Validation of a Florida strawberry anthracnose fruit rot (AFR) warning system in Iowa. Plant Disease, 2019, vol. 103, no. 1, pp. 28–33. https://doi.org/10.1094/PDIS-11-17-1762-RE

15. Forcelini B. B., Rebello C. S., Wang N.-Y., Peres N. A. Fitness, competitive ability, and mutation stability of isolates of Colletotrichum acutatum from strawberry resistant to QoI fungicides. Phytopathology, 2018, vol. 108, no. 4, pp. 462–468. https://doi.org/10.1094/PHYTO-09-17-0296-R

16. Es-Soufi R., Tahiri H., Azaroual L., El Oualkadi A., Martin P., Badoc A., Lamarti A. Biocontrol potential of Bacillus amyloliquefaciens Bc2 and Trichoderma harzianum TR against strawberry anthracnose under laboratory and field conditions. Agricultural Sciences, 2020, vol. 11, no. 3, pp. 260–277. https://doi.org/10.4236/as.2020.113017

17. Hosseini S., Amini J., Saba M. K., Karimi K., Pertot I. Preharvest and postharvest application of garlic and rosemary essential oils for controlling anthracnose and quality assessment of strawberry fruit during cold storage. Frontiers in Microbiology, 2020, vol. 11, art. 1855. https://doi.org/10.3389/fmicb.2020.01855

18. Zhuchenko A. A. Biologization and ecologization of intensification processes in agriculture. Vestnik OrelGAU, 2009, no. 3 (18), pp. 8–12 (in Russian).

19. Lerceteau-Kohler E., Roudeillac P., Markocic M., Guérin G., Praud K., Denoyes-Rothan B. The use of molecular markers for durable resistance breeding in the cultivated strawberry (Fragaria × ananassa). Acta Horticulturae, 2002, no. 567, pp. 615–618. https://doi.org/10.17660/ActaHortic.2002.567.132

20. Lerceteau-Kohler E., Guérin G., Denoyes-Rothan B. Identification of SCAR markers linked to Rca2 anthracnose resistance gene and their assessment in strawberry germplasm. Theoretical and Applied Genetics, 2005, vol. 111, no. 5, pp. 862–870. https://doi.org/10.1007/s00122-005-0008-1

21. Sturzeanu M., Calinescu M., Fralova L., Klakotskaya N., Ancu I., Sumedrea M., Marin F. C. Assessing some strawberry genotypes used in breeding programme for increasing resistance to diseases. Fruit Growing Research, 2017, vol. 33, pp. 29–34.

22. Sturzeanu M., Ciuca M., Cristina D., Turcu A. G. Use of RAPD and SCAR markers for identification of strawberry genotypes with red stele resistance genes Rpf1 and fruit rot resistance genes Rca2 in the hybrid progenies. Acta Horticulturae, 2021, no. 1309, pp. 93–100. https://doi.org/10.17660/ActaHortic.2021.1309.15

23. Keldibekova M., Bezlepkina E., Zubkova M., Dolzhikova M. DNA-screening of strawberry cultivars and hybrids (Fragaria ananassa Duch.) for resistance to fungal diseases. Pakistan Journal of Botany, 2024, vol. 56, no. 2, p. 751–757. https://doi.org/10.30848/PJB2024-2(29)

24. Lyzhin A. S., Luk’yanchuk I. V. Inheritance of anthracnose resistance determined by the dominant Rca2 gene in strawberry hybrid progeny. Tavricheskii vestnik agrarnoi nauki = Taurida Herald of the Agrarian Sciences, 2023, no. 3 (35), pp. 137–144 (in Russian). https://doi.org/10.5281/zenodo.10141405

25. Luk’yanchuk I. V., Lyzhin A. S., Kozlova I. I. Analysis of strawberry genetic collection (Fragaria L.) for Rca2 and Rpf1 genes with molecular markers. Vavilovskii zhurnal genetiki i selektsii = Vavilov Journal of Genetics and Breeding, 2018, vol. 22, no. 7, pp. 795–799 (in Russian). https://doi.org/10.18699/VJ18.423

26. Hadonou A. M., Sargent D. J., Wilson F., James C. M., Simpson D. W. Development of microsatellite markers in Fragaria, their use in genetic diversity analysis, and their potential for genetic linkage mapping. Genome, 2004, vol. 47, no. 3, pp. 429–438. https://doi.org/10.1139/g03-142

27. Lyzhin A. S., Lukyanchuk I. V., Zhbanova E. V. Polymorphism of the Rca2 anthracnose resistance gene in strawberry cultivars (Fragaria × ananassa). Trudy po prikladnoi botanike, genetike i selektsii = Proceedings on Applied Botany, Genetics and Breeding, 2019, vol. 180, no. 1, pp. 73–77 (in Russian). https://doi.org/10.30901/2227-8834-2019-1-73-77

28. Lyzhin A. S., Luk’yanchuk I. V. Analysis of Fragaria × ananassa Duch. varieties for anthracnose resistance using diagnostic DNA markers. Agrarnaya Rossiya = Agrarian Russia, 2022, no. 9, pp. 16–20 (in Russian). https://doi.org/10.30906/1999-5636-2022-9-16-20

29. Sturzeanu M., Coman M., Ciuca M., Ancu I., Cristina D., Turcu A. G. Molecular characterization of allelic status of the Rpf1 and Rca2 genes in six cultivars of strawberries. Acta Horticulturae, 2016, no. 1139, pp. 107–112. https://doi.org/10.17660/ActaHortic.2016.1139.19

30. Miller-Butler M. A., Smith B. J., Kreiser B. R., Blythe E. K. Comparison of anthracnose resistance with the presence of two SCAR markers associated with the Rca2 gene in strawberry. HortScience, 2019, vol. 54, no. 5, pp. 793–798. https://doi.org/10.21273/HORTSCI13805-18

31. Njuguna W. Development and use of molecular tools in Fragaria. Corvallis, 2010. 370 p.

32. Denoyes-Rothan B., Guérin G., Lerceteau-Köhler E., Risser G. Inheritance of resistance to Colletotrichum acutatum in Fragaria × ananassa. Phytopathology, 2005, vol. 95, no. 4, pp. 405–412. https://doi.org/10.1094/PHYTO-95-0405

33. Wagner A., Hetman B. Susceptibility of strawberry cultivars to Colletotrichum acutatum J. H. Simmonds. Acta Scien tiarum Polonorum-Hortorum Cultus, 2016, vol. 15, no. 6, pp. 209–219.


Review

Views: 25


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1817-7204 (Print)
ISSN 1817-7239 (Online)