Gliphosate and aminomethylphosphonic acid in the environment and their microbial transformation
https://doi.org/10.29235/1817-7204-2024-62-2-114-125
Abstract
Analysis of domestic and international literature indicates that the global use of glyphosate (GP), due to its effectiveness, low price and creation of herbicide-resistant agricultural crop varieties, resulted in nearly universal presence of the rest quantities of the herbicide and its main metabolite, aminomethylphosphonic acid (АМPA) in the environment: air, soil, water and crop products. Scientific information on glyphosate influence on the environment and living organisms is presented in this paper. The necessity is substantiated for periodic remediation for reducing the negative consequences of the repeated application of herbicide and detoxification of its residual quantities with the use of destructor-bacteria, capable of decomposing glyphosate and AMPA to ecologically safe compounds. The ways for glyphosate microbial transformation are reviewed. Ecologically safe detoxification assumes the use of bacterial destructors, which are destroying the phosphonic bond in glyphosate molecule. Although the bacteria of different genera are showing capacity for GP biodegradation, commercial products for the safe detoxification of glyphosate have not yet been developed due to the high level of strain specificity associated with the different ways of GF catabolism. The most perspective is the search for GP and AMPA destructors among rhizosphere bacteria, intended for application as inoculants. Complexity of the problem of GP and AMPA detoxification as well as the high level of strain specificity of bacterial destructors significantly restrain development of commercial preparations for GP and AMPA detoxification.
About the Author
N. A. MikhailouskayaBelarus
Natallia A. Mikhailouskaya – Ph. D. (Agriculture), Associate Professor, Head of the Laboratory
90, Kazinets Str., 220108, Minsk
References
1. Duke S. O., Powles S. B. Glyphosate: a-once-in-a century herbicide. Pest Management Science, 2008, vol. 64, no. 4, pp. 319-325. https://doi.org/10.1002/ps.1518
2. Carlisle S. M., Trevors J. T. Glyphosate in the environment. Water, Air and Soil Pollution, 1988, vol. 39, pp. 409-420. https://doi.org/10.1007/BF00279485
3. Zhan H., Feng Y., Fan X., Chen S. Recent advances in glyphosate biodegradation. Applied Microbiology and Biotechnology, 2018, vol. 102, no. 12, pp. 5033-5043. https://doi.org/10.1007/s00253-018-9035-0
4. Kononova S. V., Nesmeyanova M. A. Phosphonates and their degradation by microorganisms. Biokhimiya [Biochemistry], 2002, vol. 67, no. 2, pp. 220-233 (in Russian).
5. Borggaard O. K., Gimsing A. L. Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Management Science, 2008, vol. 64, no. 4, pp. 441-456. https://doi.org/10.1002/ps.1512
6. Bai S. H., Ogbourne S. M. Glyphosate: environmental contamination, toxicity and potential risks to human health via food contamination. Environmental Science and Pollution Research, 2016, vol. 23, no. 19, pp. 18988-19001. https://doi.org/10.1007/s11356-016-7425-3
7. Lupi L., Miglioranza K. S. B., Aparicio V. C., Marino D., Bedmar F., Wunderlin D. A. Occurrence of glyphosate and AMPA in an agricultural watershed from the southeastern region of Argentina. Science of the Total Environment, 2015, vol. 536, pp. 687-694. https://doi.org/10.1016/j.scitotenv.2015.07.090
8. Zharikov M. G. Ecological and toxicological assessment of long-term use of glyphosate on sod-podzolic soil and bioremediation of contaminated areas. Moscow, 2012. 118 p. (in Russian).
9. Vereecken H. Mobility and leaching of glyphosate: a review. Pest Management Science, 2005, vol. 61, no. 12, pp. 1139-1151. https://doi.org/10.1002/ps.1122
10. Mercurio P., Flores F., Mueller J. F., Carter S., Negri A. P. Glyphosate persistence in seawater. Marine Pollution Bulletin, 2014, vol. 85, no. 2, pp. 385-390. https://doi.org/10.1016/j.marpolbul.2014.01.021
11. Annett R., Habibi H. R., Hontela A. Impact of glyphosate and glyphosate-based herbicides on the freshwater environment. Journal of Applied Toxicology, 2014, vol. 34, no. 5, pp. 458-479. https://doi.org/10.1002/jat.2997
12. Grandcoin A., Piel S., Baures E. AminoMethylPhosphonic acid (AMPA) in nature waters: its sources, behavior and environmental fate. Water Research, 2017, vol. 117, pp. 187-197. https://doi.org/10.1016/j.watres.2017.03.055
13. Hanke I., Wittmer I., Bischofberger S., Stamm C., Singer H. Relevance of urban glyphosate use for surface water quality. Chemosphere, 2010, vol. 81, no. 3, pp. 422-429. https://doi.org/10.1016/j.chemosphere.2010.06.067
14. Botta F., Lavison G., Couturier G., Alliot F., Moreau-Guigon E., Fauchon N., Guery B., Chevreuil M., Blanchoud H. Transfer of glyphosate and its degrade AMPA to surface waters through urban sewerage systems. Chemosphere, 2009, vol. 77, no. 1, pp. 133-139. https://doi.org/10.1016/j.chemosphere.2009.05.008
15. Glyphosate and AMPA in drinking-water: background document for development of WHO Guidelines for Drinking-water Quality. Geneva, World Health Organization, 2005. 10 p.
16. Shuvalova N. E. Biotechnological aspects of pesticide toxicity determination on cellular and organismal test systems. Tver, 2021. 137 p. (in Russian).
17. Glass R. L. Adsorption of glyphosate by soils and clay minerals. Journal of Agricultural and Food Chemistry, 1987, vol. 35, no. 4, pp. 497-500. https://doi.org/10.1021/jf00076a013
18. Gimsing A. L., Borggaard O. K. Competitive adsorption and desorption of glyphosate and phosphate on clay silicates and oxides. Clay Minerals, 2002, vol. 37, no. 3, pp. 509-515. https://doi.org/10.1180/0009855023730049
19. Jonge H. de, Jonge L. W. de, Jacobsen O. H., Yamaguchi T., Moldrup P. Glyphosate sorption in soils of different pH and phosphorus content. Soil Science, 2001, vol. 166, no. 4, pp. 230-238. https://doi.org/10.1097/00010694-200104000-00002
20. Albers C. N., Banta G. T., Hansen P. E., Jacobsen O. S. The influence of organic matter on sorption and fate of glyphosate in soil - comparing different soils and humic substances. Environmental Pollution, 2009, vol. 157, no. 10, pp. 2865- 2870. https://doi.org/10.1016/j.envpol.2009.04.004
21. Shushkova T. V. Biodegradation of glyphosate by soil bacteria. Pushchino, 2010. 128 p. (in Russian).
22. Sviridov A. V., Shushkova T. V., Ermakova I. T., Ivanova E. V., Epiktetov D. O., Leontievsky A. A. Microbial degradation of glyphosate herbicides (review). Applied Biochemistry and Microbiology, 2015, vol. 51, no. 2, pp. 188-195. https://doi.org/10.1134/s0003683815020209
23. Sviridov A. V., Shushkova T. V., Epiktetov D. O., Tarlachkov S. V., Ermakova I. T., Leontievskii A. A. Biodegradation of organophosphorus pollutants by soil bacteria: biochemical aspects and unsolved problems. Biotekhnologiya = Biotechnology, 2020, vol. 36, no. 4, pp. 126-135 (in Russian). https://doi.org/10.21519/0234-2758-2020-36-4-126-135
24. Ermakova I. T., Shushkova T. V., Leont’evskii A. A. Microbial degradation of organophosphonates by soil bacteria. Microbiology, 2008, vol. 77, no. 5, pp. 615-620. https://doi.org/10.1134/s0026261708050160
25. Al-Rajab A. J., Schiavon M. Degradation of 14C-glyphosate and aminomethylphosphonic acid (AMPA) in three agricultural soils. Journal of Environmental Sciences, 2010, vol. 22, no. 9, pp. 1374-1380. https://doi.org/10.1016/s1001-0742(09)60264-3
26. Lancaster S. H., Hollister E. B., Senseman S. A., Gentry T. J. Effects of repeated glyphosate applications on soil microbial community composition and the mineralization of glyphosate. Pest Management Science, 2010, vol. 66, no. 1, pp. 59-64. https://doi.org/10.1002/ps.1831
27. Shushkova T. V., Ermakova I. T., Leontievsky A. A., Vasilieva G. K. Sorption and microbial degradation of glyphosate in soil suspensions. Applied Biochemistry and Microbiology, 2009, vol. 45, no. 6, pp. 599-603. https://doi.org/10.1134/s0003683809060040
28. Ratcliff A. W., Busse M. D., Shestak C. J. Changes in microbial community structure following herbicide (glyphosate) additions to forests soils. Applied Soil Ecology, 2006, vol. 34, no. 2-3, pp. 114-124. https://doi.org/10.1016/j.apsoil.2006.03.002
29. Busse M., Ratcliff A. W., Shestak C. J., Powers R. F. Glyphosate toxicity and the effects of long term vegetation control on soil microbial communities. Soil Biology and Biochemistry, 2001, vol. 33, no. 12-13, pp. 1777-1789. https://doi.org/10.1016/S0038-0717(01)00103-1
30. Zhelezova A. D. Changes in the functional and structural characteristics of the prokaryotic community of soils under the influence of the herbicide glyphosate. Moscow, 2018. 20 p. (in Russian).
31. Krüger M., Shehata A. A., Schrödl W., Rodloff A. Glyphosate suppresses the antagonistic effect of Enterococcus spp. on Clostridium botulinum. Anaerobe, 2013, vol. 20, pp. 74-78. https://doi.org/10.1016/j.anaerobe.2013.01.005
32. Zablotowicz R. M., Reddy K. N. Impact of glyphosate on Bradyrhizobium japonicum symbiosis with glyphosate-resistant transgenic soybean: a minireview. Journal of Environmental Quality, 2004, vol. 33, no. 3, pp. 825-831. https://doi.org/10.2134/jeq2004.0825
33. Sannino F., Gianfreda L. Pesticide influence on soil enzymatic activities. Chemosphere, 2001, vol. 45, no. 4-5, pp. 417-445. https://doi.org/10.1016/s0045-6535(01)00045-5
34. Haslam E. The shikimate pathway: biosynthesis of natural products series. London, Butterworths, 1974. 316 p. https://doi.org/10.1016/C2013-0-04212-0
35. Chaufan G., Coalova I., Molina M. de. Glyphosate commercial formulation causes cytotoxicity, oxidative effects, and apoptosis on human cells: differences with its active ingredient. International Journal of Toxicology, 2014, vol. 33, no. 1, pp. 29-38. https://doi.org/10.1177/1091581813517906
36. Benachour N., Seralini G. Glyphosate formulations induce apoptosis and necrosis in human umbilical, embryonic, and placental cells. Chemical Research in Toxicology, 2009, vol. 22, no. 1, pp. R. 97-105. https://doi.org/10.1021/tx800218n
37. Séralini G., Moslemi S. Differential Effects of Glyphosate and Roundup on Human Placental Cells and Aromatase. Molecular and Cellular Endocrinology, 2018, vol. 178, no. 1-2, pp. 117-131. https://doi.org/10.1016/S0303-7207(01)00433-6
38. Gasnier C., Dumont C., Benachour N., Clair E., Chagnon M.-C., Séralini G.-E. Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines. Toxicology, 2009, vol. 262, no. 3, pp. 184-191. https://doi.org/10.1016/j.tox.2009.06.006
39. Kwiatkowska M., Huras B., Bukowska B. The effect of metabolites and impurities of glyphosate on human erythrocytes (in vitro). Pesticide Biochemistry and Physiology, 2014, vol. 109, pp. 34-43. https://doi.org/10.1016/j.pestbp.2014.01.003
40. Krüger M., Schledorn P., Schrödl W., Hoppe H.-W., Lutz W., Shehata A. A. Detection of glyphosate residues in animals and humans. Journal of Environmental & Analytical Toxicology, 2014, vol. 4, no. 2, art. 210. https://doi.org/10.4172/2161-0525.1000210
41. Samsel A., Seneff S. Glyphosate supression of cytochrom P450 enzymes and amino acid biosynthesis by the gut microbiome: pathways to modern diseases. Entropy, 2013, vol. 15, no. 4, pp. 1416-1463. https://doi.org/10.3390/e15041416
42. Lamb D. C., Kelly D. E., Hanley S. Z., Mehmood Z., Kelly S. L. Glyphosate is an inhibitor of plant cytochrome P450: functional expression of Thlaspi arvensae cytochrome P45071B1/reductase fusion protein in Escherichia coli. Biochemical and Biophysical Research Communications, 1998, vol. 244, no. 1, pp. 110-114. https://doi.org/10.1006/bbrc.1997.7988
43. De Roos A. J., Blair A., Rusiecki J. A., Hoppin J. A., Svec M., Dosemeci M., Sandler D. P., Alavanja M. C. Cancer incidence among glyphosate-exposed pesticide applicators in the Agricultural Health Study. Environmental Health Perspectives, 2005, vol. 113, no. 1, pp. 49-54. https://doi.org/10.1289/ehp.7340
44. Guilherme S., Santos M. A., Gaivão I., Pacheco M. DNA and chromosomal damage induced in fish (Anguilla anguilla L.) by aminomethylphosphonic acid (AMPA) - the major environmental breakdown product of glyphosate. Environmental Science and Pollution Research, 2014, vol. 21, no. 14, pp. 8730-8739. https://doi.org/10.1007/s11356-014-2803-1
45. Bringolf R. B., Cope W. G., Mosher S., Barnhart M. C., Shea D. Acute and chronic toxicity of glyphosate compounds to glochidia and juveniles of Lampsilis siliquoidea (unionidae). Environmental Toxicology and Chemistry, 2007, vol. 26, no. 10, pp. 2094-2100. https://doi.org/10.1897/06-519R1.1
46. Relyea R. A. The lethal impact of Roundup on aquatic and terrestrial amphibians. Ecological Applications, 2005, vol. 15, no. 4, pp. 1118-1124. https://doi.org/10.1890/04-1291
47. Gaupp-Berghausen M., Hofer M., Rewald B., Zaller J. G. Glyphosate-based herbicides reduce the activity and reproduction of earthworms and lead to increased soil nutrient concentrations. Scientific Reports, 2015, vol. 5, art. 12886. https://doi.org/10.1038/srep12886
48. Ruepple M. L., Brightwell B. B., Schaefer J., Marvel J. T. Metabolism and degradation of glyphosate in soil and water. Journal of Agricultural and Food Chemistry, 1977, vol. 25, no. 3, pp. 517-528. https://doi.org/10.1021/jf60211a018
49. Balthazor T. M., Hallas L. E. Glyphosat-degrading microorganisms from industrial activated sludge. Applied and Environmental Microbiology, 1986, vol. 51, no. 2, pp. 432-434. https://doi.org/10.1128/aem.51.2.432-434.1986
50. Jacob G. S., Garbow J. R., Hallas L. E., Kimack N. M., Kishore G. M., Schaefer J. Metabolism of glyphosate in Pseudomonas sp. strain Lbr. Applied and Environmental Microbiology, 1988, vol. 54, no. 12, pp. 2953-2958. https://doi.org/10.1128/aem.54.12.2953-2958.1988
51. Mikhailouskaya N. A., Barashenko T. B., Pogirnitskaya T. V., Dyusova S. V. Screening of zonal isolates Pseudomonas sp. tolerance to glyphosate and its utilization as a source of carbon and phosphorus. Pochvovedenie i agrokhimiya [Soil Science and Agrochemistry], 2021, no. 2 (67), pp. 35-48 (in Russian).
52. Mikhailouskaya N. A., Barashenko T. B., Pogirnitskaya T. V., Dyusova S. V. Screening the capability of potassium mobilizing rhizobacteria to metabolise herbicide glyphosate. Pochvovedenie i agrokhimiya [Soil Science and Agrochemistry], 2022, no. 1 (68), pp. 200-212 (in Russian). https://doi.org/10.47612/0130-8475-2022-1(68)-200-212
53. Mikhailouskaya N. A., Barashenko T. B., Pogirnitskaya T. V., Dyusova S. V. Screening the capability of nitrogen fixing bacteria to metabolise herbicide glyphosate as a sourse of phosphorus. Pochvovedenie i agrokhimiya [Soil Science and Agrochemistry], 2022, no. 2 (69), pp. 110-120 (in Russian). https://doi.org/10.47612/0130-8475-2022-2(69)-110-120
54. Mikhailouskaya N. A., Barashenko T. B., Pogirnitskaya T. V., Dyusova S. V. Screening of phosporus solubilizing rhizospfere bacteria Pseudomonas spp. growth activity cultural in dependence on glyphosate content in liquid Dworkin-Foster medium. Pochvovedenie i agrokhimiya [Soil Science and Agrochemistry], 2023, no. 1 (70), pp. 136-148 (in Russian).
55. Quinn J. P., Peden J. M., Dick R. E. Carbon-phosphorus bond cleavage by Gram-positive and Gram-negative soil bacteria. Applied Microbiology and Biotechnology, 1989, vol. 31, no. 3, pp. 283-287. https://doi.org/10.1007/BF00258410
56. Fan J., Yang G., Zhao H., Shi G., Geng Y., Hou T., Tao K. Isolation, identification and characterization of a glyphosatedegrading bacterium, Bacillus cereus CB4, from soil. The Journal of General and Applied Microbiology, 2012, vol. 58, no. 4, pp. 263-271. https://doi.org/10.2323/jgam.58.263
57. Kishore G. M., Jacob G. S. Degradation of glyphosate by Pseudomonas sp. PG2982 via a sarcosine intermediate. Journal of Biological Chemistry, 1987, vol. 262, no. 25, pp. 12164-12168. https://doi.org/10.1016/s0021-9258(18)45331-8
58. Dick R. E., Quinn J. P. Control of glyphosate uptake and metabolism in Pseudomonas sp. 4ASW. FEMS Microbiology Letters, 1995, vol. 134, no. 2-3, pp. 177-182. https://doi.org/10.1016/0378-1097(95)00400-9
59. Liu C.-M., McLean P. A., Sookdeo C. C., Cannon F. C. Degradation of the herbicide glyphosate by members of the family Rhizobiaceae. Applied and Environmental Microbiology, 1991, vol. 57, no. 6, pp. 1799-1804. https://doi.org/10.1128/aem.57.6.1799-1804.1991
60. Li H., Joshi S. R., Jaisi D. P. Degradation and isotope source tracking of glyphosate and aminomethylphosphonic acid. Journal of Agricultural and Food Chemistry, 2016, vol. 64, no. 3, pp. 529-538. https://doi.org/10.1021/acs.jafc.5b04838
61. Kamat S. S., Raushel F. M. The enzymatic conversion of phosphonates to phosphate by bacteria. Current Opinion in Chemical Biology, 2013, vol. 17, no. 4, pp. 589-596. https://doi.org/10.1016/j.cbpa.2013.06.006
62. Hove-Jensen B., Zechel D. L., Jochimsen B. Utilization of glyphosate as phosphate source: biochemistry and genetics of bacterial carbon-phosphorus lyase. Microbiology and Molecular Biology Reviews, 2014, vol. 78, no. 1, pp. 176-197. https://doi.org/10.1128/MMBR.00040-13
63. White A. K., Metcalf W. W. Two C-P lyase operons in Pseudomonas stutzeri and their roles in the oxidation of phosphonates, phosphate, and hypophosphite. Journal of Bacteriology, 2004, vol. 186, no. 14, pp. 4730-4739. https://doi.org/10.1128/JB.186.14.4730-4739.2004
64. Mikhailovskaya N. A., Mikanova O., Barashenko T. B., Barashenko T. V. Phosphate mobilization activity in rhizobacteria. Pochvovedenie i agrokhimiya [Soil Science and Agrochemistry], 2007, no. 1 (38), pp. 225-231 (in Russian).
65. Mikhailouskaya N. A., Bogdevitch I. M., Mikanova O., Tarasiuk E. G., Barashenko T. B., Duysova S. V., Pogirnitskaya T. V. Influence of phosphorus-mobilizing bacteria on growth, yield and phytopathology state of cereal crop growings on luvisol loamy sand soils. Pochvovedenie i agrokhimiya [Soil Science and Agrochemistry], 2012, no. 1 (48), pp. 136-149 (in Russian).
66. Mikhailouskaya N. A. Azospirillum spp. and their influence on grain crop (review). Pochvovedenie i agrokhimiya [Soil Science and Agrochemistry], 2015, no. 2 (55), pp. 167-181 (in Russian).
67. Mikhailovskaya N. A. Quantitative estimation of the K-mobilizing bacteria activity and application for winter rye growing. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya agrarnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Agrarian series, 2006, no. 3, pp. 41-46 (in Russian).
68. Mikhailovskaya N. A., Barashenko T. B. Antagonistic activity of rhizobacteria A. brasilense i B. circulans in respect of pathogenic fungi Fusarium i Alternaria spp. Pochvovedenie i agrokhimiya [Soil Science and Agrochemistry], 2019, no. 1 (62), pp. 234-244 (in Russian).
Review
ISSN 1817-7239 (Online)