1. Pashkevich A., Chaikovsky A. Microgreens as a functional product of the 21st century. Nauka i innovatsii = Science and Innovation, 2021, no. 11 (225), pp. 58-63 (in Russian).
2. Manchali S., Chidambara Murthy K.N., Patil B.S. Crucial facts about health benefits of popular cruciferous vegetables. Journal Functional Foods, 2012, vol. 4, no. 1, pp. 94-106. https://doi.org/10.1016/j.jff.2011.08.004
3. Heber D. Vegetables, fruits and phytoestrogens in the prevention of diseases. Journal of Postgraduate Medicine, 2004, vol. 50, no. 3, pp. 145-149.
4. Samuolienė G., Brazaitytě G., Viršilė A., Miliauskienė J., Vaštakaitė-Kairienė V., Duchovskis P. Nutrient levels in Brassicaceae microgreens increase under tailored light-emitting diode spectra. Frontiers in Plant Science, 2019, vol. 10, art. 1475. https://doi.org/10.3389/fpls.2019.01475
5. Howard B.V., Kritchevsky D. Phytochemicals and cardiovascular disease. Phytochemicals and cardiovascular disease. A statement for healthcare professionals from the American Heart Association. Circulation, 1999, vol. 95, no. 11, pp. 2591- 2593. https://doi.org/10.1161/01.CIR.95.11.2591
6. Xiao Z., Rausch S. R., Sun J., Luo Y. Microgreens of Brassicaceae: genetic diversity of phytochemical concentrations and antioxidant capacity. LWT - Food Science and Technology, 2018, vol. 101, pp. 731-737. https://doi.org/10.1016/j.lwt.2018.10.076
7. Hacişevki A. An overview of ascorbic acid biochemistry. Journal of Faculty of Pharmacy of Ankara University, 2009, vol. 38, no. 3, pp. 233-255. https://doi.org/10.1501/Eczfak_0000000528
8. Johnson E.J. The role of carotenoids in human health. Nutrition in Clinical Care, 2002, vol. 5, no. 2, pp. 56-65. https://doi.org/10.1046/j.1523-5408.2002.00004.x
9. Edge R., McGarvey D.J., Truscott T.G. The carotenoids as anti-oxidants: a review. Journal Photochemistry and Photobiology B: Biology, 1997, vol. 41, no. 3, pp. 189-200. https://doi.org/10.1016/S1011-1344(97)00092-4
10. Pashkevich A.M., Chaikovskii A., Belyaeva K.I. Microgreens as a new category of organic vegetable products. Nauchno-innovatsionnye osnovy razvitiya otrasli ovoshchevodstva: tezisy dokladov Mezhdunarodnoi nauchno-prakticheskoi konferentsii, ag. Samokhvalovichi, Minskii raion, 22-24 avgusta 2018 g. [Scientific and innovative foundations for the development of the vegetable growing industry: abstracts of reports of the International scientific and practical conference, Samokhvalovichi, Minsk district, August 22-24, 2018]. Samokhvalovichi, 2018, pp. 25-28 (in Russian).
11. Pashkevich A.M., Chaikovskii A.I., Dosina-Dubeshko E.S., Medved’ N.V. Determination of nitrate content in seeds, seedlings, microgreens and products of leguminous vegetable crops. Ovoshchevodstvo: sbornik nauchnykh trudov [Vegetable Growing: collection of scientific papers]. Minsk, 2020, vol. 28, pp. 89-96 (in Russian).
12. Ebert A.W. Sprouts, microgreens, and edible flowers: the potential for high value specialty produce in Asia. SEAVEG 2012: regional symposium on high value vegetables in Southeast Asia: production, supply and demand, 24-26 January 2012, Chiang Mai, Thailand: proceedings. Thailand, 2012, pp. 216-227.
13. Ivanova M.I., Kashleva A.I., Mikhailov V.V., Bukharov A.F., Baleev D.N., Razin O.A. Microgreens, or a farming system without soil. Gavrish, 2016, no. 6, pp. 34-42 (in Russian).
14. Renna M. Book review: Microgreens: novel fresh and functional food to explore all the value of biodiversity. South African Journal of Botany, 2016, vol. 106, p. 250. https://doi.org/10.1016/j.sajb.2016.05.002
15. Pinto E., Almedida A., Aguiar A., Ferreira I. Comparison between the mineral profile and nitrate content of microgreens and mature lettuces. Journal of Food Composition and Analysis, 2015, vol. 37, pp. 38-43. https://doi.org/10.1016/j.jfca.2014.06.018
16. Ghoora M.D., Haldipur A.C., Srividya N. Comparative evaluation of phytochemical content, antioxidant capacities and overall antioxidant potential of select culinary microgreens. Journal of Agriculture and Food Research, 2020, vol. 2, art. 100046. https://doi.org/10.1016/j.jafr.2020.100046
17. Johnson S.A., Prenni J.E., Heuberger A.L., Isweiri H., Chaparro J.M., Newman S. E., Uchanski M. E., Omerigic H.M., Michell K.A., Bunning M., Foster M.T., Thompson H.J., Weir T. L. Comprehensive evaluation of metabolites and minerals in 6 microgreen species and the influence of maturity species and the influence of maturity. Current Developments in Nutrition, 2020, vol. 5, no. 2, pp. 1-12. https://doi.org/10.1093/cdn/nzaa180
18. Singh N., Rani S., Mishra A. Cruciferous microgreens: growing performance and their scope as super foods at high altitude locations. Progressive Horticulture, 2019, vol. 51, no. 1, pp. 41-44. https://doi.org/10.5958/2249-5258.2019.00004.6
19. Fuente B. de la, Lŏpez-Garcia G., Mańez V., Alegria A., Barberá R., Cilla A. Evaluation of the bioaccessibility of antioxidant bioactive compounds and minerals of four genotypes of Brassicaceae microgreens. Foods, 2019, vol. 8, no. 7, art. 250. https://doi.org/10.3390/foods8070250
20. Kyriacou M., El-Nakhel C., Graziani G., Pannico A., Soteriou G.A., Giordano M., Ritieni A., De Pascale S., Rouphael Y. Functional quality in novel food sources: genotypic variation in the nutritive and phytochemical composition of thirteen microgreens species. Food Chemistry, 2019, vol. 277, pp. 107-118. https://doi.org/10.1016/j.foodchem.2018.10.098
21. Jones-Baumgardt C., Llewellyn D., Ying Q., Zheng Y. Intensity of sole-source light-emitting diodes affects growth, yield, and quality of Brassicaceae microgreens. HortScience, 2019, vol. 54, no. 7, pp. 1168-1174. https://doi.org/10.21273/HORTSCI13788-18
22. Ying Q., Kong Y., Jones-Baumgardt C., Zheng Y. Responses of yield and appearance quality of four Brassicaceae microgreens to varied blue light proportion in red and blue light-emitting diodes lighting. Scientia Horticulturae, 2020, vol. 259, art. 108857. https://doi.org/10.1016/j.scienta.2019.108857
23. Galieni A., Falcinelli B.G., Stagnari F., Datti A., Benincasa P. Sprouts and microgreens: trends, opportunities, and horizons for novel research. Agronomy, 2020, vol. 10, no. 9, art. 1424. https://doi.org/10.3390/agronomy10091424
24. Teng J., Wang M., Liao P. The role of emerging micro-scale vegetables in human diet and health benefits-an updated review based on microgreens. Food & Function, 2021, vol. 12, no. 5, pp. 1914-1932. https://doi.org/10.1039/d0fo03299a
25. Meng Q., Kelly N., Runkle E.S. Substituting green or far-red radiation for blue radiation induces shade avoidance and promotes growth in lettuce and kale. Environmental and Experimental Botany, 2019, vol. 162, pp. 383-391. https://doi.org/10.1016/j.envexpbot.2019.03.016
26. Anisimov A.A., Yakovleva O.S., Gritsenko L.A., Fattakhova N.K., Tarakanov I.G. Effect of narrow-band red-blue light on the pigment complex of some ornamental plants. Doklady TSKhA [Izvestiya of Timiryazev Agricultural Academy], 2015, iss. 287, pt. 1, pp. 9-12 (in Russian).
27. Konovalova I.O., Berkovich Yu.A., Erokhin A.N., Smolyanina S.O., Yakovleva O.S., Znamensky A.I., Tarakanov I.G., Radchenko S.G., Lapach S.N., Trofimov Yu.V., Tsvirko V.I. Optimization of a light-emitting diode-based illumination system of a vitamin space greenhouse. Aviakosmicheskaya i ecologicheskaya meditsina = Aerospace and Environmental Medicine, 2016, vol. 50, no. 3, pp. 17-22 (in Russian).
28. Zhang X., Bian Z., Yuan X., Chen X. A review on the effects of light-emitting diode (LED) light on the nutrients of sprouts and microgreens. Trends in Food Science & Technology, 2020, vol. 99, pp. 203-216. https://doi.org/10.1016/j.tifs.2020.02.031
29. Lobiuc A., Vasilache V., Oroian M., Stoleru T., Burducea M., Pintilie O., Zamfirache M. M. Blue and red LED illumination improves growth and bioactive compounds contents in acyanic and cyanic Ocimum basilicum L. microgreens. Molecules, 2017, vol. 22, no. 12, art. 2111. https://doi.org/10.3390/molecules22122111
30. Brazaitytė A., Vaštakaitė V., Viršilė A., Jankauskienė J., Samuolienė G., Sakalauskienė S., Novičkovas A., Miliauskienė J., Duchovskis P. Changes in mineral element content of microgreens cultivated under different lighting conditions in a greenhouse. Acta Horticulturae, 2018, no. 1227, pp. 507-516. https://doi.org/10.17660/actahortic.2018.1227.64
31. Brazaitytė A., Vaštakaitė V., Jankauskienė J., Viršilė A., Samuolienė G., Sakalauskienė S., Novičkovas A., Miliauskienė J., Duchovskis P. Comparison of LED and HPS illumination effects on cultivation of red pak choi microgreens under indoors and greenhouse conditions. Acta Horticulturae, 2020, no. 1287, pp. 395-402. https://doi.org/10.17660/actahortic.2020.1287.51
32. Kong Y., Zheng Y. Growth and morphology responses to narrow-band blue light and its co action with low-level UVB or green light: a comparison with red light in four microgreen species. Environmental and Experimental Botany, 2020, vol. 178, art. 104189. https://doi.org/10.1016/j.envexpbot.2020.104189
33. Craver J.K., Gerovac J.R., Lopez R.G., Kopsell D.A. Light intensity and light quality from sole-source light-emitting diodes impact phytochemical concentrations within brassica microgreens. Journal of the American Society for Horticultural Science, 2017, vol. 142, no. 1, pp. 3-12. https://doi.org/10.21273/JASHS03830-16