Preview

Proceedings of the National Academy of Sciences of Belarus. Agrarian Series

Advanced search

Effect of adaptogen lithium ascorbate on the microbiota of rumen in young ewes

https://doi.org/10.29235/1817-7204-2022-60-1-91-104

Abstract

Health and productivity of ruminants directly depend on the state of rumen and digestion in intestinal tract. Normal microflora protects the body from pathogenic microbes, stimulates the immune system, participates in metabolic reactions and plays an important role in energy metabolism. Disturbance of species composition of microflora in rumen under effect of various factors leads to a state of dysbiosis, disorders of products digestibility, changes in enzymatic processes and other disorders. Biologically active substances of an adaptogenic nature can show immunomodulatory and antimicrobial activity. Adaptogen lithium ascorbate has stress-protective, neurotrophic, neuroprotective, antioxidant, immunomodulatory properties. In this paper, using molecular genetic methods, the effect of lithium ascorbate on composition of rumen microbiota of sheep was studied for the first time.  Composition of microbiota was determined by NGS sequencing method. In total, 37 phylums, 76 classes, 98 orders, 225 families and 894 species of microorganisms were identified. It has been determined that introduction of lithium ascorbate at a dose of 10 mg/kg of body weight into the main diet of sheep contributed to increase in proportion of cellulolytic bacteria from 73.6±1.6% to 75.4±0.9% and over 40% decrease in total number of infusoria in rumen content. Cellulolytic activity of rumen fluid in sheep of the experimental group increased by 38% compared to the animals of the control group. The number of pathogenic bacteria decreased from 2.7% in sheep of the control group to 1.6% in animals of the experimental group, while the content of beneficial bacilli increased from 0.3% to 0.5%, respectively. Content of undesirable and conditionally pathogenic microflora decreased in the sheep of experimental group. The obtained data confirm positive effect of adaptogen lithium ascorbate, introduced into diet at a dosage of 10 mg/kg of body weight, on qualitative and quantitative composition of microbiota in sheep rumen. Therefore, lithium ascorbate, a broad-spectrum adaptogen, can be recommended as a feed additive to the main diet of sheep to improve rumen digestion and increase productivity.

About the Authors

K. S. Ostrenko
All-Russian research Institute of Physiology, Biochemistry and Nutrition of animals - branch of the Federal Science Center for Animal Husbandry named after Academy Member L. K. Ernst
Russian Federation

Konstantin S. Ostrenko - D. Sc. (Biological).

Township Institute, Borovsk 290013, Kaluga Region



E. M. Koloskova
All-Russian research Institute of Physiology, Biochemistry and Nutrition of animals - branch of the Federal Science Center for Animal Husbandry named after Academy Member L. K. Ernst
Russian Federation

Elena M. Koloskova - Ph.D. (Biological).

Township Institute, Borovsk 290013, Kaluga Region



V. V. Ezerskij
All-Russian research Institute of Physiology, Biochemistry and Nutrition of animals - branch of the Federal Science Center for Animal Husbandry named after Academy Member L. K. Ernst
Russian Federation

Vadim A. Ezerskij - Research assistant scientist.

Township Institute, Borovsk 290013, Kaluga Region



A. N. Ovcharova
All-Russian research Institute of Physiology, Biochemistry and Nutrition of animals - branch of the Federal Science Center for Animal Husbandry named after Academy Member L. K. Ernst
Russian Federation

Anastasiya N. Ovcharova - Ph.D. (Biological).

Township Institute, Borovsk 290013, Kaluga Region



N. V. Belova
All-Russian research Institute of Physiology, Biochemistry and Nutrition of animals - branch of the Federal Science Center for Animal Husbandry named after Academy Member L. K. Ernst
Russian Federation

Nadezhda V. Belova - Research assistant scientist.

Township Institute, Borovsk 290013, Kaluga Region



L. A. Il’ina
Biotrof, LLC
Russian Federation

Larisa A. Il’ina - Ph.D. (Biological). Head of the molecular genetic laboratory.

19, korp. 1, Zagrebskiibulv., St. Petersburg, 192284



E. A. Jyldyrym
Biotrof, LLC
Russian Federation

Elena A. Jyldyrym - D. Sc. (Biological)

19, korp. 1, Zagrebskiibulv., St. Petersburg, 192284



G. Yu. Laptev
Biotrof, LLC
Russian Federation

Georgij Yu. Laptev - D. Sc. (Biological), director.

19, korp. 1, Zagrebskiibulv., St. Petersburg, 192284



References

1. Senchuk I. V. Diagnostics of color digestion disorders in sheep. Izvestiya sel’skokhozyaistvennoi nauki Tavridy = Transactions of Taurida Agricultural Science, 2019, no. 17 (180), pp. 156-163 (in Russian).

2. Shreiner A. B., Kao J. Y., Young V. B. The gut microbiome in health and in disease. Current Opinion in Gastroenterology. 2015, vol. 31, no. 1, pp. 69-75. https://doi/org/10.1097/MOG.0000000000000139

3. Khan M. J., Gerasimidis K., Edwards C. A., Shaikh M. G. Role of gut microbiota in the aetiology of obesity: proposed mechanisms and review of the literature. Journal of Obesity, 2016, vol. 2016, art. 7353642. https://doi.org/10.1155/2016/7353642

4. Zheng D., Liwinski T., Elinav E. Interaction between microbiota and immunity in health and disease. Cell Research, 2020, vol. 30, no. 6, pp. 492-506. https://doi.org/10.1038/s41422-020-0332-7

5. Yan H., Baldridge M.T., King K. Y. Hematopoiesis and the bacterial microbiome. Blood, 2018, vol. 132, no. 6, pp. 559564. https://doi.org/10.1182/blood-2018-02-832519

6. Glassner K. L., Abraham B. P., Quigley E. M. M. The microbiome and inflammatory bowel disease. Journal of Allergy and Clinical Immunology, 2020, vol. 145, no. 1, pp. 16-27. https://doi.org/10.1016/j.jaci.2019.11.003

7. Zitvogel L., Galluzzi L., Viaud S., Vétizou M., Daillère R., Kroemer G., Merad M. Cancer and the gut microbiota: an unexpected link. Science Translational Medicine, 2015, vol. 7, no. 271, p. 271ps1. https://doi.org/10.1126/scitranslmed.3010473

8. Kirpichenka A. A., Kim I. Y. Psychobiotics: can gut microbiota influence host’s mental health? Vestnik Vitebskogo gosudarstvennogo meditsinskogo universiteta = Vestnik of Vitebsk State Medical University, 2017, vol. 16, no. 2, pp. 26-42 (in Russian). https://doi.org/10.22263/2312-4156.2017.2.26

9. Cryan J. F., O’Riordan K. J., Cowan C. S. M., Sandhu K. V., Bastiaanssen T. F. S., Boehme M. (et al.). The microbiotagut-brain axis. Physiological Reviews, 2019, vol. 99, no. 4, pp. 1877-2013. https://doi.org/10.1152/physrev.00018.2018.

10. Oleskin А. V., Shenderov B. A. Probiotics, psychobiotics, and metabiotics: problems and prospects. Fizicheskaya i reabilitatsionnaya meditsina, meditsinskaya reabilitatsiya = Physical and Rehabilitation Medicine, Medical Rehabilitation, 2020, vol. 2, no. 3, pp.233–243. https://doi.org/10.36425/rehab25811 (in Russian)

11. Foster J. A., McVey Neufeld K.-A. Gut-brain axis: how the microbiome influences anxiety and depression. Trends in Neurosciences, 2013, vol. 36, no. 5, pp. 305–312. https://doi.org/10.1016/j.tins.2013.01.005.

12. Hooper L. V., Littman D. R., Macpherson A. J. Interactions between the microbiota and the immune system. Science, 2012, vol. 336, no. 6086, pp. 1268-1273. https://doi.org/10.1126/science.1223490

13. Zagoruy A. V. Veterinary and sanitary characteristic of pork, received at slaughter of stress sensible animals. Aktual’nye problemy infektsionnoi patologii i biotekhnologii: materialy X Mezhdunarodnoi studencheskoi nauchnoi konferentsii, 30–31 maya 2017 g. [Actual problems of infectious pathology and biotechnology: proceedings of the X international student scientific conference, May 30–31, 2017]. Ulyanovsk, 2017, pt. 1, pp. 159-161 (in Russian)

14. Azhmuldinov E. A., Titov M. G., Kizaev M. A., Babicheva I. A., Soboleva N. V., Malchikov R. V., Kholodilina T. N. The effect of heat stress on the intestinal microbiota. Zhivotnovodstvo i kormoproizvodstvo = Animal Husbandry and Fodder Production, 2019, vol. 102, no. 4, pp. 163-173 (in Russian). https://doi.org/10.33284/2658-3135-102-4-163

15. O’Mahony S. M., Marchesi J. R., Scully P., Codling C., Ceolho A. M., Quigley E. M., Cryan J. F., Dinan T. G. Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biological Psychiatry, 2009, vol. 65, no. 3, pp. 263-267. https://doi.org/10.1016/j.biopsych.2008.06.026

16. Marin I. A., Goertz J. E., Ren T., Rich S. S., Onengut-Gumuscu S., Farber E., Wu M., Overall C. C., Kipnis J., Gaultier A. Microbiota alteration is associated with the development of stress-induced despair behavior. Scientific Reports, 2017, vol. 7, art. 43859. https://doi.org/10.1038/srep43859

17. Dinan T. G., Cryan J. F. Melancholic microbes: a link between gut microbiota and depression? Neurogastroenterology a. Motility, 2013, vol. 25, no. 9, pp. 713-719. https://doi.org/10.1111/nmo.12198

18. Dinan T. G., Stanton C., Cryan J. F. Psychobiotics: a novel class of psychotropic. Biological Psychiatry, 2013, vol. 74, no. 10, pp. 720-726. https://doi.org/biopsych.2013.05.001

19. Gibson G. R., Scott K. P., Rastall R. A., Tuohy K. M., Hotchkiss A., Dubert-Ferrandon A., Gareau M., Murphy E. F., Saulnier D., Loh G., Macfarlane S., Delzenne N., Ringel Y., Kozianowski G., Dickmann R., Lenoir-Wijnkoop I., Walker C., Buddington R. Dietary prebiotics: current status and new definition. Food Science and Technology Bulletin, 2011, vol. 7, pp. 1-19. https://doi.org/10.1616/1476-2137.15880

20. Liu C., Wu H., Liu S., Chai S., Meng Q., Zhou Z. Dynamic alterations in yak rumen bacteria community and metabolome characteristics in response to feed type. Frontiers in Microbiology, 2019, vol. 10, art. 1116. https://doi.org/10.3389/fmicb.2019.01116

21. Pitta D. W., Indugu N., Kumar S., Vecchiarelli B., Sinha R., Baker L. D., Bhukya B., Ferguson J. D. Metagenomic assessment of the functional potential of the rumen microbiome in Holstein dairy cows. Anaerobe, 2016, vol. 38, pp. 50-60. https://doi.org/10.1016/j.anaerobe.2015.12.003

22. Pitta D. W., Pinchak W. E., Indugu N., Vecchiarelli B., Sinha R., Fulford J. D. Metagenomic analysis of the rumen microbiome of steers with wheat-induced frothy bloat. Frontiers in Microbiology, 2016, vol. 7, art. 689. https://doi.org/10.3389/fmicb.2016.00689

23. Liu H., Xu T., Xu S., Ma L., Han X., Wang X., Zhang X., Hu L., Zhao N., Chen Y., Pi L., Zhao X. Effect of dietary concentrate to forage ratio on growth performance, rumen fermentation and bacterial diversity of Tibetan sheep under barn feeding on the Qinghai-Tibetan plateau. Peer J. 2019, vol. 7, art. 7462. https://doi.org/10.7717/peerj.7462

24. Ilina L. A., Filippova V. A., Layshev K. A., Yildirim E.A., Dunyashev T. P., Brazhnik E. A., Dubrovin A. V., Sobolev D. V., Tiurina D. G., Novikova N. I., Laptev G. Yu., Yuzhakov A. A., Romanenko T. M., Vylko Yu. P. Variation in the Russian Arctic reindeer (Rangifer tarandus) rumen microbiome related to season change. Sel’skokhozyaistvennaya biologiya = Agricultural Biology, 2020, vol. 55, no. 4, pp. 697-713 (in Russian). https://doi.org/10.15389/agrobiology.2020.4.697rus

25. Fu Z., Xu X., Zhang J., Zhang L. Effect of different feeding methods on rumen microbes in growing Chinese Tan sheep. Revista Brasileira de Zootecnia, 2020, vol. 49, art. e20190258. https://doi.org/10.37496/rbz4920190258

26. Liu J., Bian G., Zhu W., Mao S. High-grain feeding causes strong shifts in ruminal epithelial bacterial community and expression of Toll-like receptor genes in goats. Frontiers in Microbiology, 2015, vol. 6, art. 167. https://doi.org/10.3389/fmicb.2015.00167

27. Nozdrin G. A., Ivanova A. B., Nozdrin A. G. Theoretical and practical bases of applying probiotics based on bacilli in veterinary science. Vestnik NGAU = Bulletin of the NSAU, 2011, no. 5 (21), pp. 87-95 (in Russian).

28. Pulina G., Milán M. J., Lavín M. P., Theodoridis A., Morin E., Capote J., Thomas D. L., Francesconi A. H. D., Caja G. Invited review: Current production trends, farm structures, and economics of the dairy sheep and goat sectors. Journal of Dairy Science, 2018, vol. 101, no. 8, pp. 6715-6729. https://doi.org/10.3168/jds.2017-14015

29. Arsen’ev D. D., Lobkov V. Yu. The technology of Romanov sheep breeding. Yaroslavl, Yaroslavl State Agricultural Academy, 2011. 268 p. (in Russian).

30. Fomichev Yu. P., Bogolyubova N. V., Mishurov A. V., Rykov R. A. Biocorrection enzymatic and microbiological processes in the rumen, intermediate metabolism of sheep by applying to the feeding of oxidant and organic iodine. Rossiiskaya sel’skokhozyaistvennaya nauka [Russian Agricultural Sciences], 2019, no. 4, pp. 43-47 (in Russian). https://doi.org/10.31857/S2500-26272019443-47

31. Chernaya L. V. Features of vital activity endobiontnyh ciliates in the stomach sheep. Mezhdunarodnyi zhurnal prikladnykh i fundamental’nykh issledovanii = International Journal of Applied and Fundamental Research, 2016, no. 3, pt. 3, pp. 402-404 (in Russian).

32. Artemieva O. A., Kolodina E. N., Logvinova T. I. Study of microbio-cenosis in hybrid and non-cross animals. Novosti nauki v APK [News of Science in the Agroindustrial Complex], 2018, no. 2 (11), pt. 1, pp. 247-250 (in Russian). https://doi.org/10.25930/5er7-eh98

33. Zeng Y., Zeng D., Ni X., Zhu H., Jian P., Zhou Y., Xu S., Lin Y., Li Y., Yin Z., Pan K., Jing B. Microbial community compositions in the gastrointestinal tract of Chinese Mongolian sheep using Illumina MiSeq sequencing revealed high microbial diversity. AMB Express, 2017, vol. 7, no. 1, pp. 75-86. https://doi.org/10.1186/s13568-017-0378-1

34. Zhang Z., Xu D., Li W., Hao J., Wang J., Xin Z., Wang W., Qiang Q., Huang X., Zhou J. Convergent evolution of rumen microbiomes in high-altitude mammals. Current Biology, 2016, vol. 26, no. 14, pp. 1873-1879. https://doi.org/10.1016/j.cub.2016.05.012

35. Wang L., Zhang K., Zhang C., Feng Y., Zhang X., Wang X., Wu G. Dynamics and stabilization of the rumen microbiome in yearling Tibetan sheep. Scientific Reports, 2019, vol. 9, no. 1, art. 19620. https://doi.org/10.1038/s41598-019-56206-3

36. Langda S., Zhang C., Zhang K., Gui B., Ji D., Deji C., Cuoji A., Wang X., Wu Y. Diversity and composition of rumen bacteria, fungi, and protozoa in goats and sheep living in the same high-altitude pasture. Animals, 2020, vol. 10, no. 2, art. 186. https://doi.org/10.3390/ani10020186

37. Li H., Yu Q., Li T., Shao L., Su M., Zhou H., Qu J. Rumen microbiome and metabolome of tibetan sheep (ovis aries) reflect animal age and nutritional requirement. Frontiers in Veterinary Science, 2020, vol. 7, art. 609. https://doi.org/10.3389/fvets.2020.00609

38. Trabi E. В., Seddik H., Xie F., Lin L., Mao S. Comparison of the rumen bacterial community, rumen fermentation and growth performance of fattening lambs fed lowgrain, pelleted or non-pelleted high grain total mixed ration. Animal Feed Science and Technology, 2019, vol. 253, pp. 1-12. https://doi.org/10.1016/j.anifeedsci.2019.05.001

39. Odenyo A. A., Osuji P. O. Tannin-tolerant ruminal bacteria from East African ruminants. Canadian Journal of Microbiology, 1998, vol. 44, no. 9, pp. 905-909. https://doi.org/10.1139/cjm-44-9-905

40. Fomichev Yu. P., Bogolyubova N. V., Romanov V. N., Kolodina E. N. Comparative assessment of natural feed additives for functional effects on the digestive processes in the rumen of sheep (Ovis aries). Sel’skokhozyaistvennaya biologiya = Agricultural Вiology, 2020, vol. 55, no. 4, pp. 770-783 (in Russian). https://doi.org/10.15389/agrobiology.2020.4.770rus

41. Ostrenko K. S., Galochkina V. P., Koloskova E. M., Galochkin V. A. Organic lithium salt are effective anti-stress preparations of a new generation. Problemy biologii produktivnykh zhivotnykh = Problems of Productive Animal Biology, 2017, no. 2, pp. 5-28.

42. Janda J. M., Abbott S. L. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. Journal of Clinical Microbiology, 2007, vol. 45, no. 9, pp. 2761-2764. https://doi.org/10.1128/JCM.01228-07

43. Qin J., Li R., Raes J., Arumugam M., Burgdorf K. S., Manichanh C. (et al.). A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 2010, vol. 464, no. 7285, pp. 59-65. https://doi.org/10.1038/nature08821

44. Quince C., Walker A.W., Simpson J.T., Loman N.J., Segata N. Shotgun metagenomics, from sampling to analysis. Nature Biotechnology, 2017, vol. 35, no. 9, pp. 833-844. https://doi.org/10.1038/nbt.3935

45. Laptev G., Yyldyrym E., Ilyina L. Rumen microbiome: basis of cow health. Zhivotnovodstvo Rossii = Animal Husbandry of Russia, 2020, no. 4, pp. 42-45 (in Russian).


Review

Views: 634


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1817-7204 (Print)
ISSN 1817-7239 (Online)