Оптимизация режимов проращивания семян маша, нута и сои для получения высокобелковых концентратов
https://doi.org/10.29235/1817-7204-2021-59-4-501-512
Анатацыя
В Республике Беларусь производство проростков бобовых культур, богатых белком, аминокислотами, клетчаткой, микро- и макроэлементами, биологически активными веществами, а также продуктов здорового питания на их основе практически отсутствует. В связи с этим на рынке доминируют аналогичные товары импортного производства высокой ценовой категории. Цель исследования – разработка оптимальных температурных и влажностных режимов проращивания семян маша, нута и сои, получение высокобелковых концентратов и оценка их потребительских свойств. Методом математического моделирования эксперимента оптимизированы температурные и влажностные режимы малоизученного процесса проращивания семян маша (Vigna radiata (L.) R.Wilczek), нута (Cicer arietinum L.) и сои (Glycine max (L.) Merr.), оценены органолептические, физико-химические свойства, биохимический состав, микробиологическая безопасность изготовленных проростков. Разработана лабораторная ресурсосберегающая технология получения высокобелковых концентратов из зернобобового сырья, которая станет предпосылкой организации их промышленного производства. Концентраты пророщенных семян маша, нута и сои будут востребованы для создания рецептур новых продуктов здорового питания и натуральных косметических средств, расширения их ассортимента.
Ключ. словы
Аб аўтарах
В. ШаршуновБеларусь
Е. Урбанчик
Беларусь
Л. Сапунова
Беларусь
А. Масальцева
Беларусь
М. Галдова
Беларусь
А. Павлюк
Беларусь
Спіс літаратуры
1. Warriner, K. Microbiological safety of sprouted seeds: interventions and regulations / K. Warriner, B. Smal // The produce contamination problem: causes and solutions / ed.: K. R. Matthews, G. M. Saper, C. P. Gerba. – Second ed. – Elsevier, 2014. – Chap. 11. – P. 237–268. https://doi.org/10.1016/B978-0-12-404611-5.00011-7
2. Hall, C. Composition, nutritional value, and health benefits of pulses / C. Hall, C. Hillen, J. G. Robinson // Cereal Chemistry. – 2017. – Vol. 94, N 1. – P. 11–31. https://doi.org/10.1094/cchem-03-16-0069-fi
3. Nutritional and end-use perspectives of sprouted grains: A comprehensive review / A. Ikram [et al.] // Food Science & Nutrition. – 2021. – Vol. 9, N 8. – P. 4617–4628. https://doi.org/10.1002/fsn3.2408
4. Flavor aspects of pulse ingredients / W. S. Roland [et al.] // Cereal Chemistry J. – 2017. – Vol. 94, N 1. – P. 58–65. https://doi.org/10.1094/CCHEM-06-16-0161-FI
5. Ghavidel, R. A. The impact of germination and dehulling on nutrients, antinutrients, in vitro iron and calcium bioavailability and in vitro starch and protein digestibility of some legume seeds / R. A. Ghavidel, J. Prakash // LWT – Food Science a. Technology. – 2007. – Vol. 40, N 7. – P. 1292–1299. https://doi.org/10.1016/j.lwt.2006.08.002
6. Sprouted grains: a comprehensive review / P. Benincasa [et al.] // Nutrients. – 2019. – Vol. 11, N 2. – Art. 421. https://doi.org/10.3390/nu11020421
7. Peñas, E. Advances in production, properties and applications of sprouted seeds / E. Peñas, C. Martínez-Villaluenga // Foods. – 2020. – Vol. 9, N 6. – Art. 790. https:// doi.org/10.3390/foods9060790
8. Plant sprout foods: Biological activities, health benefits, and bioavailability / J. Geng [et al.] // J. of Food Biochemistry. – 2021. – Art. e13777. http://doi.org/10.1111/jfbc.13777
9. Miyahira, R. F. Bacteriological safety of sprouts: A brief review / R. F. Miyahira, A. E. C. Antunes // Intern. J. of Food Microbiology. – 2021. – Vol. 352. – Art. 109266. https://doi.org/10.1016/j.ijfoodmicro.2021.109266
10. Effect of sprouting on nutritional quality of pulses / D. Erba [et al.] // Intern. J. of Food Sciences a. Nutrition. – 2018. – Vol. 70, N 1. – P. 30–40. http://doi.org/10.1080/09637486.2018.1478393
11. Isoflavone content and composition in chickpea (Cicer arietinum L.) sprouts germinated under different conditions / Y. Gao [et al.] // J. of Agr. a. Food Chemistry. – 2015. – Vol. 63, N 10. – P. 2701–2707. http://doi.org/10.1021/jf5057524
12. Shi, H. L. Comprehensive profiling of isoflavones, phytosterols, tocopherols, minerals, crude protein, lipid, and sugar during soybean (Glycine max) germination / H. L. Shi, P. K. Nam, Y. F. Ma // J. of Agr. a. Food Chemistry. – 2010. – Vol. 58, N 8. – P. 4970–4976. http://doi.org/10.1021/jf100335j
13. Optimal germination condition impacts on the antioxidant activity and phenolic acids profile in pigmented desi chickpea (Cicer arietinum L.) seeds / D. M. Domínguez-Arispuro [et al.] // J. of Food Science Technology. – 2018. – Vol. 55, N 2. – P. 638–647. http://doi.org/10.1007/s13197-017-2973-1
14. Bains, K. Optimization of germination time and heat treatments for enhanced availability of minerals from leguminous sprouts / K. Bains, V. Uppal, H. Kaur // J. of Food Science Technology. – 2011. – Vol. 51, N 5. – P. 1016–1020. http://doi.org/10.1007/s13197-011-0582-y
15. Lu, Y. The effect of light in vitamin C metabolism regulation and accumulation in mung bean (Vigna radiata) germination / Y. Lu, X. Guo // Plant Foods for Human Nutrition. – 2020. – Vol. 75, N 1. – P. 24–29. https:// doi.org/10.1007/s11130-019-00787-x
16. Khattak, A. B. Impact of germination time and type of illumination on carotenoid content, protein solubility and in vitro protein digestibility of chickpea (Cicer arietinum L.) sprouts / A. B. Khattak, A. Zeb, N. Bibi // Food Chemistry. – 2008. – Vol. 109, N 4. – P. 797–801. https://doi.org/10.1016/j.foodchem.2008.01.046
17. Legume seeds and cereal grains’ capacity to accumulate iron while sprouting in order to obtain food fortificant / M. Zielińska-Dawidziak [et al.] // Acta Scientiarum Polonorum – Technologia Alimentaria. – 2016. – Vol. 15, N 3. – P. 333–338. https://doi.org/10.17306/J.AFS.2016.3.32
18. Ukrainian dietary bread with selenium-enriched soya malt / O. Stabnikova [et al.] // Plant Foods for Human Nutrition. – 2019. – Vol. 74, N 2. – P. 157–163. https://doi.org/10.1007/s11130-019-00731-z
19. The compositional, physicochemical and functional properties of germinated mung bean flour and its addition on quality of wheat flour noodle / Y. Liu [et al.] // J. of Food Science a. Technology. – 2018. – Vol. 55, N 12. – P. 5142–5152. https://doi.org/10.1007/s13197-018-3460-z
20. Novel molecular, cytotoxical, and immunological study on promising and selective anticancer activity of mung bean sprouts / R. R. Hafidh [et al.] // BMC Complementary a. Alternative Medicine. – 2012. – Vol. 12. – Art. 208. https://doi.org/10.1186/1472-6882-12-208
21. Anti-allergic effects and related active constituents of mung bean (Vignaradiatus Linn) sprouts / L. Li [et al.] // Food Science a. Biotechnology. – 2016. – Vol. 25, N 2. – P. 553–559. https://doi.org/10.1007/s10068-016-0077-8
22. Bioactive peptides from germinated soybean with anti-diabetic potential by inhibition of dipeptidyl peptidase-IV, α-amylase, and α-glucosidase enzymes / M. González-Montoya [et al.] // Intern. J. of Molecular Science. – 2018. – Vol. 19, N 10. – P. 1292–1299. https://doi.org/10.3390/ijms19102883
23. Inhibitory effects of mung bean (Vigna radiata L.) seed and sprout extracts on melanogenesis / Y. M. Jeong [et al.] // Food Science a. Biotechnology. – 2016. – Vol. 25, N 2. – P. 567–573. https://doi.org/10.1007/s10068-016-0079-6
24. Isoflavones from black chickpea (Cicer arietinum L) sprouts with antioxidant and antiproliferative activity / D.-M. Domínguez-Arispuro [et al.] // Saudi J. Biol. Sciences. – 2020. – Vol. 28, N 1. – P. 1141–1146. http://doi.org/10.1016/j.sjbs.2020.11.048
25. Isoflavones in chickpeas inhibit adipocyte differentiation and prevent insulin resistance in 3T3-L1 cells / Y. Gao [et al.] // J. of Agr. a. Food Chemistry. – 2015. – Vol. 63, N 44. – P. 9696–2703. http://doi.org/10.1021/acs.jafc.5b03957
26. Antihyperlipidemic activity of chickpea sprouts supplementation in ovariectomy-induced dyslipidemia in rats / S. Harini [et al.] // J. of Ayurveda Integrative Medicine. – 2015. – Vol. 6, N 2. – P. 104–110. https://doi.org/10.4103/0975-9476.146546
27. Novel promising reproductive and metabolic effects of Cicer arietinum L. extract on letrozole induced polycystic ovary syndrome in rat model / S. E. Ali [et al.] // J. of Ethnopharmacology. – 2021. – Vol. 278. – Art. 114318. https://doi.org/10.1016/j.jep.2021.114318
28. Novel antiviral activity of mung bean sprouts against respiratory syncytial virus and herpes simplex virus-1: an in vitro study on virally infected Vero and MRC-5 cell lines / R. R. Hafidh [et al.] // BMC Complementary a. Alternative Medicine. – 2015. – Vol. 15, N 1. – Art. 179. https://doi.org/10.1186/s12906-015-0688-2
29. The estrogenic activity of isoflavones extracted from chickpea Cicer arietinum L sprouts in vitro / H. Ma [et al.] // Phytotheraphy Research. – 2013. – Vol. 27, N 8. – P. 1237–1242. https://doi.org/10.1002/ptr.4858
30. Antioxidant activity in mung bean sprouts and safety of extracts for cosmetic use / T. Dongyan [et al.] // J. of Cosmetic Science. – 2014. – Vol. 65, N 4. – P. 207–216.
31. Шаршунов, В. А. Оптимизация режимов проращивания зерна гороха / В. А. Шаршунов, Е. Н. Урбанчик, Е. А. Шалюта // Вес. Нац. акад. навук Беларусi. Сер. аграр. навук. – 2014. – № 1. – С. 101–106.
32. Интенсификация процесса получения пророщенного зернового сырья с использованием ферментных препаратов комплексного действия / Е. Н. Урбанчик [и др.] // Вес. Нац. акад. навук Беларусi. Сер. бiял. навук. – 2019. – Т. 64, № 1. – С. 82–91. https://doi.org/10.29235/1029-8940-2019-64-1-82-91