1. Warriner, K. Microbiological safety of sprouted seeds: interventions and regulations / K. Warriner, B. Smal // The produce contamination problem: causes and solutions / ed.: K. R. Matthews, G. M. Saper, C. P. Gerba. - Second ed. - Elsevier, 2014. - Chap. 11. - P. 237-268. https://doi.org/10.1016/B978-0-12-404611-5.00011-7
2. Hall, C. Composition, nutritional value, and health benefits of pulses / C. Hall, C. Hillen, J. G. Robinson // Cereal Chemistry. - 2017. - Vol. 94, N 1. - P. 11-31. https://doi.org/10.1094/cchem-03-16-0069-fi
3. Nutritional and end-use perspectives of sprouted grains: A comprehensive review / A. Ikram [et al.] // Food Science & Nutrition. - 2021. - Vol. 9, N 8. - P. 4617-4628. https://doi.org/10.1002/fsn3.2408
4. Flavor aspects of pulse ingredients / W. S. Roland [et al.] // Cereal Chemistry J. - 2017. - Vol. 94, N 1. - P. 58-65. https://doi.org/10.1094/CCHEM-06-16-0161-FI
5. Ghavidel, R. A. The impact of germination and dehulling on nutrients, antinutrients, in vitro iron and calcium bioavailability and in vitro starch and protein digestibility of some legume seeds / R. A. Ghavidel, J. Prakash // LWT - Food Science a. Technology. - 2007. - Vol. 40, N 7. - P. 1292-1299. https://doi.org/10.1016/j.lwt.2006.08.002
6. Sprouted grains: a comprehensive review / P. Benincasa [et al.] // Nutrients. - 2019. - Vol. 11, N 2. - Art. 421. https://doi.org/10.3390/nu11020421
7. Peñas, E. Advances in production, properties and applications of sprouted seeds / E. Peñas, C. Martínez-Villaluenga // Foods. - 2020. - Vol. 9, N 6. - Art. 790. https:// https://doi.org/doi.org/10.3390/foods9060790
8. Plant sprout foods: Biological activities, health benefits, and bioavailability / J. Geng [et al.] // J. of Food Biochemistry. - 2021. - Art. e13777. https://doi.org/10.1111/jfbc.13777
9. Miyahira, R. F. Bacteriological safety of sprouts: A brief review / R. F. Miyahira, A. E. C. Antunes // Intern. J. of Food Microbiology. - 2021. - Vol. 352. - Art. 109266. https://doi.org/10.1016/j.ijfoodmicro.2021.109266
10. Effect of sprouting on nutritional quality of pulses / D. Erba [et al.] // Intern. J. of Food Sciences a. Nutrition. - 2018. - Vol. 70, N 1. - P. 30-40. https://doi.org/10.1080/09637486.2018.1478393
11. Isoflavone content and composition in chickpea (Cicer arietinum L.) sprouts germinated under different conditions / Y. Gao [et al.] // J. of Agr. a. Food Chemistry. - 2015. - Vol. 63, N 10. - P. 2701-2707. https://doi.org/10.1021/jf5057524
12. Shi, H. L. Comprehensive profiling of isoflavones, phytosterols, tocopherols, minerals, crude protein, lipid, and sugar during soybean (Glycine max) germination / H. L. Shi, P. K. Nam, Y. F. Ma // J. of Agr. a. Food Chemistry. - 2010. - Vol. 58, N 8. - P. 4970-4976. https://doi.org/10.1021/jf100335j
13. Optimal germination condition impacts on the antioxidant activity and phenolic acids profile in pigmented desi chickpea (Cicer arietinum L.) seeds / D. M. Domínguez-Arispuro [et al.] // J. of Food Science Technology. - 2018. - Vol. 55, N 2. - P. 638-647. https://doi.org/10.1007/s13197-017-2973-1
14. Bains, K. Optimization of germination time and heat treatments for enhanced availability of minerals from leguminous sprouts / K. Bains, V. Uppal, H. Kaur // J. of Food Science Technology. - 2011. - Vol. 51, N 5. - P. 1016-1020. https://doi.org/10.1007/s13197-011-0582-y
15. Lu, Y. The effect of light in vitamin C metabolism regulation and accumulation in mung bean (Vigna radiata) germination / Y. Lu, X. Guo // Plant Foods for Human Nutrition. - 2020. - Vol. 75, N 1. - P. 24-29. https:// https://doi.org/doi.org/10.1007/s11130-019-00787-x
16. Khattak, A. B. Impact of germination time and type of illumination on carotenoid content, protein solubility and in vitro protein digestibility of chickpea (Cicer arietinum L.) sprouts / A. B. Khattak, A. Zeb, N. Bibi // Food Chemistry. - 2008. - Vol. 109, N 4. - P. 797-801. https://doi.org/10.1016/j.foodchem.2008.01.046
17. Legume seeds and cereal grains’ capacity to accumulate iron while sprouting in order to obtain food fortificant / M. Zielińska-Dawidziak [et al.] // Acta Scientiarum Polonorum - Technologia Alimentaria. - 2016. - Vol. 15, N 3. - P. 333-338. https://doi.org/10.17306/J.AFS.2016.3.32
18. Ukrainian dietary bread with selenium-enriched soya malt / O. Stabnikova [et al.] // Plant Foods for Human Nutrition. - 2019. - Vol. 74, N 2. - P. 157-163. https://doi.org/10.1007/s11130-019-00731-z
19. The compositional, physicochemical and functional properties of germinated mung bean flour and its addition on quality of wheat flour noodle / Y. Liu [et al.] // J. of Food Science a. Technology. - 2018. - Vol. 55, N 12. - P. 5142-5152. https://doi.org/10.1007/s13197-018-3460-z
20. Novel molecular, cytotoxical, and immunological study on promising and selective anticancer activity of mung bean sprouts / R. R. Hafidh [et al.] // BMC Complementary a. Alternative Medicine. - 2012. - Vol. 12. - Art. 208. https://doi.org/10.1186/1472-6882-12-208
21. Anti-allergic effects and related active constituents of mung bean (Vignaradiatus Linn) sprouts / L. Li [et al.] // Food Science a. Biotechnology. - 2016. - Vol. 25, N 2. - P. 553-559. https://doi.org/10.1007/s10068-016-0077-8
22. Bioactive peptides from germinated soybean with anti-diabetic potential by inhibition of dipeptidyl peptidase-IV, α-amylase, and α-glucosidase enzymes / M. González-Montoya [et al.] // Intern. J. of Molecular Science. - 2018. - Vol. 19, N 10. - P. 1292-1299. https://doi.org/10.3390/ijms19102883
23. Inhibitory effects of mung bean (Vigna radiata L.) seed and sprout extracts on melanogenesis / Y. M. Jeong [et al.] // Food Science a. Biotechnology. - 2016. - Vol. 25, N 2. - P. 567-573. https://doi.org/10.1007/s10068-016-0079-6
24. Isoflavones from black chickpea (Cicer arietinum L) sprouts with antioxidant and antiproliferative activity / D.-M. Domínguez-Arispuro [et al.] // Saudi J. Biol. Sciences. - 2020. - Vol. 28, N 1. - P. 1141-1146. https://doi.org/10.1016/j.sjbs.2020.11.048
25. Isoflavones in chickpeas inhibit adipocyte differentiation and prevent insulin resistance in 3T3-L1 cells / Y. Gao [et al.] // J. of Agr. a. Food Chemistry. - 2015. - Vol. 63, N 44. - P. 9696-2703. https://doi.org/10.1021/acs.jafc.5b03957
26. Antihyperlipidemic activity of chickpea sprouts supplementation in ovariectomy-induced dyslipidemia in rats / S. Harini [et al.] // J. of Ayurveda Integrative Medicine. - 2015. - Vol. 6, N 2. - P. 104-110. https://doi.org/10.4103/0975-9476.146546
27. Novel promising reproductive and metabolic effects of Cicer arietinum L. extract on letrozole induced polycystic ovary syndrome in rat model / S. E. Ali [et al.] // J. of Ethnopharmacology. - 2021. - Vol. 278. - Art. 114318. https://doi.org/10.1016/j.jep.2021.114318
28. Novel antiviral activity of mung bean sprouts against respiratory syncytial virus and herpes simplex virus-1: an in vitro study on virally infected Vero and MRC-5 cell lines / R. R. Hafidh [et al.] // BMC Complementary a. Alternative Medicine. - 2015. - Vol. 15, N 1. - Art. 179. https://doi.org/10.1186/s12906-015-0688-2
29. The estrogenic activity of isoflavones extracted from chickpea Cicer arietinum L sprouts in vitro / H. Ma [et al.] // Phytotheraphy Research. - 2013. - Vol. 27, N 8. - P. 1237-1242. https://doi.org/10.1002/ptr.4858
30. Antioxidant activity in mung bean sprouts and safety of extracts for cosmetic use / T. Dongyan [et al.] // J. of Cosmetic Science. - 2014. - Vol. 65, N 4. - P. 207-216.
31. Шаршунов, В. А. Оптимизация режимов проращивания зерна гороха / В. А. Шаршунов, Е. Н. Урбанчик, Е. А. Шалюта // Вес. Нац. акад. навук Беларусi. Сер. аграр. навук. - 2014. - № 1. - С. 101-106.
32. Интенсификация процесса получения пророщенного зернового сырья с использованием ферментных препаратов комплексного действия / Е. Н. Урбанчик [и др.] // Вес. Нац. акад. навук Беларусi. Сер. бiял. навук. - 2019. - Т. 64, № 1. - С. 82-91. https://doi.org/10.29235/1029-8940-2019-64-1-82-91