Creation of autosex chicken breeds for organic poultry farming
https://doi.org/10.29235/1817-7204-2021-59-4-477-487
Abstract
Recently, the demand for organic products has been increasing in the world. Organic poultry farming requires additional costs due to the extensive method of poultry housing, low planting density, availability of paddocks and other requirements for production of organic products. Therefore, creation of specialized breeds is especially relevant today. The paper presents the experience of creating an autosex population of the Leningrad Golden-Gray (LZS) in the bioresource collection “Genetic collection of rare and endangered breeds of chickens” RRIFAGB - Branch of the L.K. Ernst Federal Research Center for Animal Husbandry. The accuracy of separation by sex of day-old chickens reaches 98%. To create autosex chicken breed, we used breeds and populations of the bioresource collection that have marker genes of plumage color linked to the gender in the genotype. To obtain the breed status, a genome-wide study of the LZS population was conducted. Assessment of the genome homozygosity level showed compliance with the average level characteristic of consolidated groups. The study of genetic variability characterizes the population of LZS as numerous. The inbreeding coefficient of LZS chickens is at a safe level and is a consequence of intensive selection. As a result, an autosex population of LZS was created and tested, which meets the conditions for obtaining the status of a breed and allows to meet the increased requirements of organic poultry farming in the best way. The expediency of using autosex breeds for organic poultry farming has been 478 Proceedings of the National Academy of Sciences of Belarus, agrarian Series, 2021, vol. 59, no. 4 рр. 477–487 substantiated by saving feed and growing areas. The principles of creating an autosex breed from the genetic material of gene pool herds can be applied in other breeding programs.
Keywords
About the Authors
A. V. MakarovaRussian Federation
Aleksandra V. Makarova - Ph.D. (Agricultural)
55a, Moscowskoe shosse, 196601 St. Petersburg - Pushkin
A. B. Vakhrameev
Russian Federation
Anatoly B. Vakhrameev
55a, Moscowskoe shosse, 196601 St. Petersburg - Pushkin
N. V. Dementieva
Russian Federation
Natalia V. Dementieva - Ph.D. (Biology)
55a, Moscowskoe shosse, 196601 St. Petersburg - Pushkin
Z. L. Fedorova
Russian Federation
Zoya L. Fedorova - Ph.D. (Agricultural)
55a, Moscowskoe shosse, 196601 St. Petersburg - Pushkin
References
1. Dementiva N., Kudinov A., Mitrofanova O., Mishina A., Smaragdov M., Yakovlev A. Chicken resource population as the source of study genetic improvement of indigenous breeds. Journal of Animal Science, 2018, vol. 96, suppl. 3, pp. 513. https://doi.org/10.1093/jas/sky404.1122
2. Harper G. C., Makatouni A. Consumer perception of organic food production and farm animal welfare. British Food Journal, 2002, vol. 104, no. 3/4/5, pp. 287-299. https://doi.org/10.1108/00070700210425723
3. Lund V., Algers B. Research on animal health and welfare in organic farming – a literature review. Livestock Production Science, 2003, vol. 80, no. 1-2, pp. 55-68. https://doi.org/10.1016/S0301-6226(02)00321-4
4. Fanatico A. Organic poultry production in the United States. US, 2008. Available at: www.attra.ncat.org/attra-pub/pPDF/organicpoultry.pdf (accessed 20.04.2021).
5. Kijlstra A., Eijck I.A. J. M. Animal health in organic livestock production systems: a review. NJAS - Wageningen Journal of Life Sciences, 2006, vol. 54, no. 1, pp. 77-94. https://doi.org/10.1016/s1573-5214(06)80005-9
6. Lund V. Natural living - a precondition for animal welfare in organic farming. Livestock Science, 2006, vol. 100, no. 2–3, pp. 71-83. https://doi.org/10.1016/j.livprodsci.2005.08.005
7. Jacob M. E., Fox J. T., Reinstein S. L., Nagaraja T.G. Antimicrobial susceptibility of foodborne pathogens in organic or natural production systems: an overview. Foodborne Pathogens and Disease, 2008, Vol. 5, no 6, pp. 721-730. https://doi.org/10.1089/fpd.2008.0095
8. Fanatico A. C., Owens C. M., Emmert J.L. Organic poultry production in the United States: broilers. Journal of Applied Poultry Research, 2009, vol. 18, no. 2, pp. 355-366. https://doi.org/10.3382/japr.2008-00123
9. Arsi K., Donoghue D. J., Venkitanarayanan K., Donoghue A.M. Reducing foodborne pathogens in organic poultry: challenges and opportunities. Food safety in poultry meat production, Cham, 2019, pp. 25-46. https://doi.org/10.1007/978-3-030-05011-5_2
10. Tyshchenko V. I., Mitrofanova O. V., Dement’eva N. V., Terletskii V. P., Yakovlev A.F. Estimation of genetic variability in the breeds and hen experimental populations by DNA-fingerprinting. Sel’skokhozyaistvennaya biologiya = Agricultural Вiology, 2007, vol. 42, no. 4, pp. 29-33 (in Russian).
11. Robb E. A., Gitter C. L., Cheng H. H., Delany M.E. Chromosomal mapping and candidate gene discovery of chicken developmental mutants and genome-wide variation analysis of MHC congenics. Journal of Heredity, 2011, vol. 102, no. 2, pp. 141-156. http[s://doi.org/10.1093/jhered/esq122
12. Spielman D., Brook B. W., Briscoe D. A., Frankham R. Does inbreeding and loss of genetic diversity decrease disease resistance? Conservation Genetics, 2004, vol. 5, no. 4, pp. 439-448. https://doi.org/10.1023/B:COGE.0000041030.76598.cd
13. Bonin A., Nicole F., Pompanon F., Miaud C., Taberlet P. Population adaptive index: a new method to help measure intraspecific genetic diversity and prioritize populations for conservation. Conservation Biology, 2007, vol. 21, no. 3, pp. 697-708. https://doi.org/10.1111/j.1523-1739.2007.00685.x
14. Radwan J., Biedrzycka A., Babik W. Does reduced MHC diversity decrease viability of vertebrate populations? Biological Conservation, 2010, vol. 143, no. 3, pp. 537-544. https://doi.org/10.1016/j.biocon.2009.07.026
15. Berg C. Health and welfare in organic poultry production. Acta Veterinaria Scandinavia. Supplementum, 2001, no. 95, pp. 37-45. https://doi.org/10.1186/1751-0147-43-S1-S37
16. Gawron M. F., Smyth J.R. The use of blue-splashed white down in color sexing crosses. Poultry Science, 1980, vol. 59, no. 11, pp. 2369-2372. https://doi.org/10.3382/ps.0592369
17. Bacon L. D., Smith E., Crittenden L. B., Havenstein G.B. Association of the slow feathering (K) and an endogenous viral (ev21) gene on the Z chromosome of chickens. Poultry Science, 1988, vol. 67, no. 2, pp. 191-197. https://doi.org/10.3382/ps.0670191
18. Takenouchi A., Toshishige M., Ito N., Tsudzuki M. Endogenous viral gene ev21 is not responsible for the expression of late feathering in chickens. Poultry Science, 2018, vol. 97, no. 2, pp. 403-411. https://doi.org/10.3382/ps/pex345
19. Crawford R. D. (ed.). Poultry breeding and genetics. Amsterdam, Elsevier, 1990. 1123 р.
20. Jerome F.N. Auto-sex linkage in Barred Plymouth Rock. Poultry Science, 1939, vol. 18, no. 6, pp. 437-440. https://doi.org/10.3382/ps.0180437
21. Hellström A. R., Gunnarsson U., Kerje S., Andersson L., Sundström E., Bed’Hom B., Tixier-Boichard M., Honaker C. F., Siegel P. B., Sahlqvist A.-S., Kämpe O., Jensen P. Sex-linked barring in chickens is controlled by the CDKN2A /B tumour suppressor locus. Pigment Cell and Melanoma Research, 2010, vol. 23, no. 4, pp. 521-530. https://doi.org/10.1111/j.1755-148X.2010.00700.x
22. Bowers R. R., Harmon J., Prescott S., Asano J., Wynne S. Fowl model for vitiligo: genetic regulation on the fate of the melanocytes. Pigment Cell Research, 1992, suppl. 2, pp. 242-248. https://doi.org/10.1111/j.1600-0749.1990.tb00379.x
23. Gluckman T.-L., Cardoso G.C. The dual function of barred plumage in birds: camouflage and communication. Journal of Evolutionary Biology, 2010, vol. 23, no. 11, pp. 2501-2506. https://doi.org/10.1111/j.1420-9101.2010.02109.x
24. Lin S. J., Foley J., Jiang T. X., Yeh C. Y., Wu P., Foley A., Yen C. M., Huang Y. C., Cheng H. C., Chen C. F., Reeder B., Jee S. H., Widelitz R. B., Chuong C.M. Topology of feather melanocyte progenitor niche allows complex pigment patterns to emerge. Science, 2013, vol. 340, no. 6139, pp. 1442-1445. https://doi.org/10.1126/science.1230374
25. Fisher R. The design of experiments. Edinburgh, Oliver and Boyd, 1935. 252 p.
26. Campo J.L. Use of the sex-linked barring (B) gene for chick sexing on an eumelanotic columbian background. Poultry Science, 1991, vol. 70, no. 7, pp. 1469-1473. https://doi.org/10.3382/ps.0701469
27. Dorshorst B., Ashwell C. Genetic mapping of the sex-linked barring gene in the chicken. Poultry Science, 2009, vol. 88, no. 9, pp. 1811-1817. https://doi.org/10.3382/ps.2009-00134
28. Schwochow Thalmann D., Ring H., Sundström E., Cao X., Larsson M., Kerje S., Höglund A., Fogelholm J., Wright D., Jemth P., Hallböök F., Bed’Hom B., Dorshorst B., Tixier-Boichard M., Andersson L. The evolution of Sex-linked barring alleles in chickens involves both regulatory and coding changes in CDKN2A. PLoS Genetics, 2017, vol. 13, no. 4, p. e1006665. https://doi.org/10.1371/journal.pgen.1006665
29. Yang L., Du X., Wei S., Gu L., Li N., Gong Y., Li S. Genome-wide association analysis identifies potential regulatory genes for eumelanin pigmentation in chicken plumage. Animal Genetics, 2017, vol. 48, no. 5, pp. 611-614. https://doi.org/10.1111/age.12573
30. Makarova A. V., Mitrofanova O. V., Vakhrameev A. B., Dementeva N.V. Molecular-genetic bases of plumage coloring in chicken. Vavilovskii zhurnal genetiki i selektsii = Vavilov Journal of Genetics and Breeding, 2019, vol. 23, no. 3, pp. 343-354 (in Russian). https://doi.org/10.18699/VJ19.499
31. Muszyński S., Kwiecień M., Tomaszewska E., Świetlicka I., Dobrowolski P., Kasperek K., Jeżewska-Witkowska G. Effect of caponization on performance and quality characteristics of long bones in Polbar chickens. Poultry Science, 2017, vol. 96, no. 2, pp. 491-500. https://doi./org/10.3382/ps/pew301
32. Schmidt H., Proll R. Taschenatlas Hühner und Zwerghühner: 182 Rassen für Garten, Haus, Hof und Ausstellung [Pocket atlas of chickens and bantams: 182 breeds for garden, house, yard and exhibition]. Stuttgart, Ulmer, 2005. 191 p. (in German).
33. Da Costa M. J., Colson G., Frost T. J., Halley J., Pesti G.M. Straight-run vs. sex separate rearing for two broiler genetic lines Part 2: Economic analysis and processing advantages. Poultry Science, 2017, vol. 96, no. 7, pp. 2127-2136. https://doi.org/10.3382/ps/pew498
34. Guo S., Xv J., Li Y., Bi Y., Hou Y., Ding B. Interactive effects of dietary vitamin K3 and Bacillus subtilis PB6 on the growth performance and tibia quality of broiler chickens with sex separate rearing. Animal, 2020, vol. 14, no. 8, pp. 1610-1618. https://doi.org/10.1017/S1751731120000178
35. Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M.A. R., Bender D., Maller J., Sklar P., De Bakker P.I. W., Daly M. J., Sham P.C. PLINK: a tool set for whole-genome association and population-based linkage analyses. The American Society of Human Genetics, 2007, vol. 81, no. 3, pp. 559-575. https://doi.org/10.1086/519795
36. Xu L., He Y., Ding Y., Liu G. E., Zhang H., Cheng H. H., Robert L., Taylor J., Song J. Genetic assessment of inbred chicken lines indicates genomic signatures of resistance to Marek’s disease. Journal of Animal Science and Biotechnology, 2018, vol. 9, no. 1, art. 65. https://doi.org/10.1186/s40104-018-0281-x
37. Chen L. Wang X., Cheng D., Chen K., Fan Y., Wu G., You J., Liu S., Mao H., Ren J. Population genetic analyses of seven Chinese indigenous chicken breeds in a context of global breeds. Animal Genetics, 2019, vol. 50, no. 1, pp. 82-86. https://doi.org/10.1111/age.12732
38. Almeida O.A. C. Moreira G.C. M., Rezende F. M., Boschiero C., Peixoto J. O., Ibelli A.M. G., Ledur M. C., Novais F. J., Coutinho L.L. Identification of selection signatures involved in performance traits in a paternal broiler line. BMC Genomics, 2019, vol. 20, no. 1, art. 449. https://doi.org/10.1186/s12864-019-5811-1