1. Gusakov V. G., Bel’skii V. I., Kazakevich P. P. (et al.). Scientific farming systems of the Republic of Belarus. Minsk, Belaruskaya navuka Publ., 2020. 683 p. (in Russian).
2. Proceedings 8th EWRS Workshop on Physical and Cultural Weed, Zaragoza, Spain, 9-11 March 2009. Zaragoza, 2009. 147 p.
3. Barberi P. Weed management in organic agriculture: are we addressing the right issues? Weed Research, 2002, vol. 42, no. 3, pp. 177-193. https://doi.org/10.1046/j.1365-3180.2002.00277.x
4. Cloutier D. C., Van der Weide R. Y., Peruzzi A., Leblanc M.L. Mechanical weed management. Non-chemical weed management: principles, concepts and technology. Wallingford, 2007, pp. 111-134. https://doi.org/10.1079/9781845932909.0000
5. Palamarchuk V.I. Intertillage of row spacings with different protective zones. Sakharnaya svekla [Sugar Beet], 1986, no. 4, pp. 28-31 (in Russian).
6. Akhmerov Kh. Kh. An automated machine for thinning sugar beet seedlings. Mekhanizatsiya i elektrifikatsiya sel’skogo khozyaistva [Mechanization and Electrification of Agriculture], 1984, no. 7, pp. 19-26 (in Russian).
7. Semichev S.V. Analysis of trajectory control devices for agricultural machines. Innovatsii v sel’skom khozyaistve [Innovations in Agriculture], 2017, no. 4 (25), pp. 217-221 (in Russian).
8. Lutsenko V. P., Tokarev N. A., Sokolova I. M., Nikitina T.V. Environmentally friendly technologies of mechanical weed control in the protective zone of row crops. Vestnik Rossiiskoi akademii sel’skokhozyaistvennykh nauk [Bulletin of the Russian Academy of Agricultural Sciences], 2006, no. 5, pp. 70-71 (in Russian).
9. Aldoshin N.V. Research of technological processes in plant growing using the methods of matrix calculus. Vestnik Moskovskogo gosudarstvennogo agroinzhenernogo universiteta [Bulletin of the Moscow State Agroengineering University], 2007, no. 1, pp. 64-66 (in Russian).
10. Fontanelli M., Frasconi C., Raffaelli M., Peruzzi A., Martelloni L., Pirchio M. Innovative strategies and machines for physical weed control in organic and integrated vegetable crops. Chemical Engineering Transactions, 2015, vol. 44, pp. 211- 216. https://doi.org/10.3303/CET1544036
11. Sudachenko V. N., Kozlov V.V. On improving the device for tracking the protective zone of cultivated plants during inter-row cultivation. Tekhnologii i tekhnicheskie sredstva mekhanizirovannogo proizvodstva produktsii rastenievodstva i zhivotnovodstva v Severo-Zapadnoi zone Rossii: sbornik nauchnykh trudov [Technologies and technical means of mechanized production of crop and livestock products in the North-West zone of Russia: collection of scientific papers]. St. Petersburg, 2002, iss. 73, pp. 71-76 (in Russian).
12. Kunz C., Weber J. F., Gerhards R. Benefits of precision farming technologies for mechanical weed control in soybean and sugar beet - comparison of precision hoeing with conventional mechanical weed control. Agronomy, 2015, vol. 5, no. 2, pp. 130-142. https://doi.org/10.3390/agronomy 5020130
13. Kunz C., Weber J. F., Peteinatos G. G., Sökefeld M., Gerhards R. Camera steered mechanical weed control in sugar beet, maize and soybean. Precision Agriculture, 2018, vol. 19, no. 4, pp. 708-720. https://doi.org/10.1007/s11119-017-9551-4
14. Pérez-Ruiz M., Slaughter D. C., Gliever C. J., Upadhyaya S.K. Automatic GPS-based intra-row weed knife control system for transplanted row crops. Computers and Electronics in Agriculture, 2012, vol. 80, pp. 41-49. https://doi.org/10.1016/j.compag.2011.10.006
15. Jarrett K., Kavukcuoglu K., Ranzato M., LeCun Y. What is the best multi-stage architecture for object recognition? 2009 IEEE 12th International Conference on Computer Vision (ICCV): proceedings, 29 September - 2 October 2009, Kyoto, Japan. Kyoto, 2009, pp. 2146-2153. https://doi.org/10.1109/iccv.2009.5459469
16. Fennimore S. A., Slaughter D. C., Siemens M. C., Leon R. G., Saber M. Technology for automation of weed control in specialty crops. Weed Technology, 2016, vol. 30, no. 4, pp. 823-837. https://doi.org/10.1614/WT-D-16-00070.1
17. Ruckelshausen A., Klose R., Linz A., Marquering J., Thiel S., Tolke S. Autonomous robots for weed control. Journal of Plant Diseases and Protection, 2006, spec. iss. 20, pp. 173-180.
18. Vetokhіn V. І., Bіlovod O. І., Prіlєpo N. V., Altibaev A.N. The ratio of regulation and self-regulation of processes in the work of tillage implements. Tezi naukovikh dopovіdei KhІKh Mіzhnarodnoї naukovoї konferentsії «Naukovo-tekhnіchnі zasadi rozrobki, viprobuvannya ta prognozuvannya sіl’s’kogospodars’koї tekhnіki і tekhnologіi», prisvyachenoї 85-rіchchyu vіd dnya narodzhennya akademіka L.V. Pogorіlogo ta 150-rіchchyu vіd dnya narodzhennya profesora K.G. Shindlera [Abstracts of scientific reports of the XIX International scientific conference «Scientific and technical principles of development, testing and forecasting of agricultural machinery and technologies», dedicated to the 85th anniversary of the birth of academician L.V. Pogorily and the 150th anniversary of the birth of professor K.G. Shindler]. Doslіdnits’ke, 2019, pp. 15-16 (in Ukrainian).
19. Besekerskii V. A., Popov E.P. Theory of automatic control systems. 4th ed. St. Petersburg, Professiya Publ., 2003. 752 p. (in Russian).
20. Prokopovich G.A. Development of a vision system for a service mobile robot. Tretii Vserossiiskii nauchno-prakticheskii seminar «Bespilotnye transportnye sredstva s elementami iskusstvennogo intellekta», 22-23 sentyabrya 2015 g., Innopolis, Respublika Tatarstan, Rossiya [The third All-Russian scientific and practical seminar «Unmanned vehicles with artificial intelligence elements», September 22-23, 2015, Innopolis, the Republic of Tatarstan, Russia]. Innopolis, 2016, pp.127- 136 (in Russian).