1. Ibtisham F., Zhang L., Xiao M., An L., Ramzan M. B., Nawab A., Zhao Y., Li G., Xu Y. Genomic selection and its application in animal breeding. Thai Journal of Veterinary Medicine, 2017, vol. 47, no. 3, pp. 301-310.
2. Georges M., Charlier C., Hayes B. Harnessing genomic information for livestock improvement. Nature Reviews Genetics, 2019, vol. 20, no. 3, pp. 135-156. https://doi.org/10.1038/s41576-018-0082-2
3. Meuwissen T., Hayes B., Goddard M. Genomic selection: A paradigm shift in animal breeding. Animal Frontiers, 2016, vol. 6, no. 1, pp. 6-14. https://doi.org/10.2527/af.2016-0002
4. Sahu A. R., Nayak N., Panigrahi M., Kumar S. Advances in genomic strategies to improve growth and meat production traits in sheep: an overview. Indian Journal of Small Ruminants, 2017, vol. 23, no. 2, pp. 139-147. https://doi.org/10.5958/0973-9718.2017.00052.6
5. Abdoli R., Mirhoseini S. Z., Hossein-Zadeh G. N., Zamani P., Gondro C. Genome-wide association study to identify genomic regions affecting prolificacy in Lori-Bakhtiari sheep. Animal Genetics, 2018, vol. 49, no. 5, pp. 488-491. https://doi.org/10.1111/age.12700
6. Benavides M. V., Souza C. J. H., Moraes J. C. F. How efficiently Genome-Wide Association Studies (GWAS) identify prolificity-determining genes in sheep. Genetics and Molecular Research, 2018, vol. 17, no. 2, pp. 9-14. https://doi.org/10.4238/gmr16039909
7. Miller J. M., Festa-Bianchet M., Coltman D. W. Genomic analysis of morphometric traits in bighorn sheep using the Ovine Infinium® HD SNP BeadChip. PeerJ, 2018, vol. 6, no. 2, p. e4364. https://doi.org/10.7717/peerj.4364
8. Kominakis A., Hager-Theodorides A. L., Zoidis E., Saridaki A., Antonakos G., Tsiamis G. Combined GWAS and ‘guilt by association’-based prioritization analysis identifies functional candidate genes for body size in sheep. Genetics Selection Evolution, 2017, vol. 49, no. 41, art. 41. https://doi.org/10.1186/s12711-017-0316-3
9. Mil’chevskii V. D. Selection of pairs in sheep breeding. Aekonomika: ekonomika i sel’skoe khozyaistvo [Aeconomics: Economics and Agriculture], 2018, vol. 27, no. 3. Available at: https://aeconomy.ru/news/agro/podbor-par-roditeley-v-ovtsevodstve.html (accessed 11.11.2020) (in Russian).
10. Seno L. O., Guidolin D. G. F., Aspilcueta-Borquis R. R., Nascimento G. B. D., Silva T. B. R., Oliveira H. N., Munari D. Genomic selection in dairy cattle simulated populations. Journal of Dairy Research, 2018, vol. 85, no. 2, pp. 125- 132. https://doi.org/10.1017/S0022029918000304
11. Weller J. I., Ezra E., Ron M. Invited review: A perspective on the future of genomic selection in dairy cattle. Journal of Dairy Science, 2017, vol. 100, no. 11, pp. 8633-8644. https://doi.org/10.3168/jds.2017-12879
12. Hope M., Haynes F., Oddy H., Koohmaraie M., Al-Owaimer A., Geesink G. The effects of the myostatin g+6723G>A mutation on carcass and meat quality of lamb. Meat Science, 2013, vol. 95, no. 1, pp. 118-122. https://doi.org/10.1016/j.meatsci.2013.03.029
13. Palmer B. R., Su H. Y., Roberts N., Jonathan G., Hickford H., Bickerstaffe R. Single nucleotide polymorphisms in an intron of the ovine calpastatin gene. Animal Biotechnology, 2000, vol. 11, no. 1, pp. 63-67. https://doi.org/10.1080/10495390009525948
14. Van der Werf J. H. J. Marker-assisted aelection in aheep and goats. Marker-assisted selection: current status and future perspectives in crops, livestock, forestry and fish. Rome, 2007, chap. 13, pp. 229-247.
15. Kijas J. W., McCulloch R., Edwards J. H., Oddy V. H., Lee S. H., Van der Werf J. Evidence for multiple alleles effecting muscling and fatness at the Ovine GDF8 locus. BMC Genetics, 2007, vol. 8, no. 1, art. 80. https://doi.org/10.1186/1471-2156-8-80
16. Gholizadeh M., Rahimi-Mianji G., Nejati-Javaremi A. Genomewide association study of body weight traits in Baluchi sheep. Journal of Genetics, 2015, vol. 94, no. 1, pp. 143-146. https://doi.org/10.1007/s12041-015-0469-1
17. Korenev M. M., Furaeva N. S., Khrustaleva V. I., Sokolova S. I., Grigoryan L. N., Marzanov N. S. Valuable world gene pool of sheep - Romanov breed. Ovtsy, kozy, sherstyanoe delo [Sheep, Goats, Wool Business], 2017, no. 3, pp. 2-5 (in Russian).
18. Furaeva N. S., Khrustaleva V. I., Sokolova S. I., Grigoryan L. N., Marzanov N. S. The state and prospects of Romanov sheep breeding in Russia. Ovtsy, kozy, sherstyanoe delo [Sheep, Goats, Wool Business], 2015, no. 1, pp. 6-9 (in Russian).
19. Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M., Bender D., Maller J., Sklar P., Bakker P., Daly M., Sham P. PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 2007, vol. 81, no. 3, pp. 559-575. https://doi.org/10.1086/519795
20. Robertson I. B., Horiguchi M., Zilberberg L., Dabovic B., Hadjiolova K., Rifkin D. B. Latent TGF-β-binding proteins. Matrix Biology, 2015, vol. 47, pp. 44-53. https://doi.org/10.1016/j.matbio.2015.05.005
21. Davis M. R., Andersson R., Severin J., Hoon M. J., Bertin N., Baillie K., Kawaji H., Sandelin A., Forrest A. R. R., Summers K. Transcriptional profiling of the human fibrillin/LTBP gene family, key regulators of mesenchymal cell functions. Molecular Genetics and Metabolism, 2014, vol. 112, no. 1, pp. 73-83. https://doi.org/10.1016/j.ymgme.2013.12.006
22. Satuluri V. S. A. K., Seelam J., Gupta S. P. A quantitative structure-activity relationship study on some series of potassium channel blockers. Medicinal Chemistry, 2009, vol. 5, no. 1, pp. 87-92. https://doi.org/10.2174/157340609787049244
23. Tzchori I., Day T. F., Carolan P. J., Zhao Y., Wassif C. A., Li L., Lewandoski M., Gorivodsky M., Love P. E., Porter F. D., Westphal H., Yang Y. LIM homeobox transcription factors integrate signaling events that control three-dimensional limb patterning and growth. Development, 2009, vol. 136, no. 8, pp. 1375-1385. https://doi.org/10.1242/dev.026476
24. Stogios P. J., Downs G. S., Jauhal J. J. S., Nandra S. K., Privé G. G. Sequence and structural analysis of BTB domain proteins. Genome Biology, 2005, vol. 6, no. 10, p. R82. https://doi.org/10.1186/gb-2005-6-10-r82
25. Jiang B., Moskovitz J. The functions of the mammalian methionine sulfoxide reductase system and related diseases. Antioxidants, 2018, vol. 7, no. 9, art. 122. https://doi.org/10.3390/antiox7090122
26. Celi P. The role of oxidative stress in small ruminants’ health and production. Revista Brasileira de Zootecnia, 2010, vol. 39, suppl. spec., pp. 348-363. https://doi.org/10.1590/S1516-35982010001300038
27. Ponnampalam E. N., Hopkins D. L., Giri K., Jacobs J. L., Plozza T., Lewandowski P., Bekhit A. The use of oxidative stress biomarkers in live animals (in vivo) to predict meat quality deterioration postmortem (in vitro) caused by changes in muscle biochemical components. Journal of Animal Science, 2017, vol. 95, no. 7, pp. 3012-3024. https://doi.org/10.2527/jas.2016.0887
28. Mizumoto S., Yamada S., Sugahara K. Molecular interactions between chondroitin-dermatan sulfate and growth factors/receptors/matrix proteins. Current Opinion in Structural Biology, 2015, vol. 34, pp. 35-42. https://doi.org/10.1016/j.sbi.2015.06.004
29. Kaneko T., Joshi R., Feller S. M., Li S. S. Phosphotyrosine recognition domains: the typical, the atypical and the versatile. Cell Communication and Signaling, 2012, vol. 10, no. 1, art. 32. https://doi.org/10.1186/1478-811X-10-32
30. Greene M., Lai Y., Pajcini K., Bailis W., Pear W. S., Lancaster E. Delta/Notch-Like EGF-Related Receptor (DNER) is not a notch ligand. PLoS ONE, 2016, vol. 11, no. 9, p. e0161157. https://doi.org/10.1371/journal.pone.0161157