Preview

Proceedings of the National Academy of Sciences of Belarus. Agrarian Series

Advanced search

Genome-wide association study (GWAS) with productivity in Romanov sheep breed

https://doi.org/10.29235/1817-7204-2021-59-1-71-80

Abstract

Genetic technologies used in breeding of small ruminants requires searching for new molecular markers of productive traits. The most effective for this is genome-wide association study (GWAS) of single nucleotide polymorphisms (SNP) with economically valuable traits. The paper presents results of study of associations of the frequency of single nucleotide polymorphisms with a rank assessment according to complex of productive traits (super-elite) in Romanov sheep using DNA biochips Ovine Infinium HD BeadChip 600K. Eleven SNPs have been found having significant correlation with the animals belonging to the “super-elite” group. Five substitutions are located in the genes introns, six are related to intergenic polymorphisms. The highest reliability of association with productivity was observed in substitution rs410516628 (р = 3,14 · 10-9) located on the 3rd chromosome. Substitution rs422028000 on 2nd chromosome differs with the fact that in the “super-elite” group it was found in 90 % of haplotypes. Polymorphisms rs411162754 (1st chromosome) and rs417281100 (10th chromosome) in our study turned out to be the rarest – only in “super-elite” group and only in a quarter of haplotypes. The genes located near the identified SNPs are mainly associated with metabolic and regulatory processes. Our study has identified several new candidate genes with polymorphism probably associated with the ranking in terms of productivity in Romanov sheep: LTBP1, KCNH8, LMX1B, ZBTB43, MSRA, CHPF, PID1 and DNER. The results obtained create a theoretical basis for further study of candidate genes affecting implementation of phenotypic traits in Romanov sheep. The revealed polymorphisms associated with the productive traits of sheep can be used in practical breeding as molecular and genetic markers for selection of parental pairs.

About the Authors

A. Y. Krivoruchko
All-Russian Research Institute for Sheep and Goat Breeding - branch of the North Caucasus Federal Agricultural Research Center
Russian Federation

Alexander Y. Krivoruchko - D. Sc. (Biological)

15 Alley Zootechnical, Stavropol, 355017



O. A. Yatsyk
All-Russian Research Institute for Sheep and Goat Breeding - branch of the North Caucasus Federal Agricultural Research Center
Russian Federation

Olesya A. Yatsyk - Ph.D. (Biological)

15 Alley Zootechnical, Stavropol, 355017



T. Y. Saprikina
All-Russian Research Institute for Sheep and Goat Breeding - branch of the North Caucasus Federal Agricultural Research Center
Russian Federation

Tatyana Y. Saprikina

15 Alley Zootechnical, Stavropol, 355017



D. D. Petukhova
All-Russian Research Institute for Sheep and Goat Breeding - branch of the North Caucasus Federal Agricultural Research Center
Russian Federation

Daria D. Petukhova

15 Alley Zootechnical, Stavropol, 355017



References

1. Ibtisham F., Zhang L., Xiao M., An L., Ramzan M. B., Nawab A., Zhao Y., Li G., Xu Y. Genomic selection and its application in animal breeding. Thai Journal of Veterinary Medicine, 2017, vol. 47, no. 3, pp. 301-310.

2. Georges M., Charlier C., Hayes B. Harnessing genomic information for livestock improvement. Nature Reviews Genetics, 2019, vol. 20, no. 3, pp. 135-156. https://doi.org/10.1038/s41576-018-0082-2

3. Meuwissen T., Hayes B., Goddard M. Genomic selection: A paradigm shift in animal breeding. Animal Frontiers, 2016, vol. 6, no. 1, pp. 6-14. https://doi.org/10.2527/af.2016-0002

4. Sahu A. R., Nayak N., Panigrahi M., Kumar S. Advances in genomic strategies to improve growth and meat production traits in sheep: an overview. Indian Journal of Small Ruminants, 2017, vol. 23, no. 2, pp. 139-147. https://doi.org/10.5958/0973-9718.2017.00052.6

5. Abdoli R., Mirhoseini S. Z., Hossein-Zadeh G. N., Zamani P., Gondro C. Genome-wide association study to identify genomic regions affecting prolificacy in Lori-Bakhtiari sheep. Animal Genetics, 2018, vol. 49, no. 5, pp. 488-491. https://doi.org/10.1111/age.12700

6. Benavides M. V., Souza C. J. H., Moraes J. C. F. How efficiently Genome-Wide Association Studies (GWAS) identify prolificity-determining genes in sheep. Genetics and Molecular Research, 2018, vol. 17, no. 2, pp. 9-14. https://doi.org/10.4238/gmr16039909

7. Miller J. M., Festa-Bianchet M., Coltman D. W. Genomic analysis of morphometric traits in bighorn sheep using the Ovine Infinium® HD SNP BeadChip. PeerJ, 2018, vol. 6, no. 2, p. e4364. https://doi.org/10.7717/peerj.4364

8. Kominakis A., Hager-Theodorides A. L., Zoidis E., Saridaki A., Antonakos G., Tsiamis G. Combined GWAS and ‘guilt by association’-based prioritization analysis identifies functional candidate genes for body size in sheep. Genetics Selection Evolution, 2017, vol. 49, no. 41, art. 41. https://doi.org/10.1186/s12711-017-0316-3

9. Mil’chevskii V. D. Selection of pairs in sheep breeding. Aekonomika: ekonomika i sel’skoe khozyaistvo [Aeconomics: Economics and Agriculture], 2018, vol. 27, no. 3. Available at: https://aeconomy.ru/news/agro/podbor-par-roditeley-v-ovtsevodstve.html (accessed 11.11.2020) (in Russian).

10. Seno L. O., Guidolin D. G. F., Aspilcueta-Borquis R. R., Nascimento G. B. D., Silva T. B. R., Oliveira H. N., Munari D. Genomic selection in dairy cattle simulated populations. Journal of Dairy Research, 2018, vol. 85, no. 2, pp. 125- 132. https://doi.org/10.1017/S0022029918000304

11. Weller J. I., Ezra E., Ron M. Invited review: A perspective on the future of genomic selection in dairy cattle. Journal of Dairy Science, 2017, vol. 100, no. 11, pp. 8633-8644. https://doi.org/10.3168/jds.2017-12879

12. Hope M., Haynes F., Oddy H., Koohmaraie M., Al-Owaimer A., Geesink G. The effects of the myostatin g+6723G>A mutation on carcass and meat quality of lamb. Meat Science, 2013, vol. 95, no. 1, pp. 118-122. https://doi.org/10.1016/j.meatsci.2013.03.029

13. Palmer B. R., Su H. Y., Roberts N., Jonathan G., Hickford H., Bickerstaffe R. Single nucleotide polymorphisms in an intron of the ovine calpastatin gene. Animal Biotechnology, 2000, vol. 11, no. 1, pp. 63-67. https://doi.org/10.1080/10495390009525948

14. Van der Werf J. H. J. Marker-assisted aelection in aheep and goats. Marker-assisted selection: current status and future perspectives in crops, livestock, forestry and fish. Rome, 2007, chap. 13, pp. 229-247.

15. Kijas J. W., McCulloch R., Edwards J. H., Oddy V. H., Lee S. H., Van der Werf J. Evidence for multiple alleles effecting muscling and fatness at the Ovine GDF8 locus. BMC Genetics, 2007, vol. 8, no. 1, art. 80. https://doi.org/10.1186/1471-2156-8-80

16. Gholizadeh M., Rahimi-Mianji G., Nejati-Javaremi A. Genomewide association study of body weight traits in Baluchi sheep. Journal of Genetics, 2015, vol. 94, no. 1, pp. 143-146. https://doi.org/10.1007/s12041-015-0469-1

17. Korenev M. M., Furaeva N. S., Khrustaleva V. I., Sokolova S. I., Grigoryan L. N., Marzanov N. S. Valuable world gene pool of sheep - Romanov breed. Ovtsy, kozy, sherstyanoe delo [Sheep, Goats, Wool Business], 2017, no. 3, pp. 2-5 (in Russian).

18. Furaeva N. S., Khrustaleva V. I., Sokolova S. I., Grigoryan L. N., Marzanov N. S. The state and prospects of Romanov sheep breeding in Russia. Ovtsy, kozy, sherstyanoe delo [Sheep, Goats, Wool Business], 2015, no. 1, pp. 6-9 (in Russian).

19. Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M., Bender D., Maller J., Sklar P., Bakker P., Daly M., Sham P. PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 2007, vol. 81, no. 3, pp. 559-575. https://doi.org/10.1086/519795

20. Robertson I. B., Horiguchi M., Zilberberg L., Dabovic B., Hadjiolova K., Rifkin D. B. Latent TGF-β-binding proteins. Matrix Biology, 2015, vol. 47, pp. 44-53. https://doi.org/10.1016/j.matbio.2015.05.005

21. Davis M. R., Andersson R., Severin J., Hoon M. J., Bertin N., Baillie K., Kawaji H., Sandelin A., Forrest A. R. R., Summers K. Transcriptional profiling of the human fibrillin/LTBP gene family, key regulators of mesenchymal cell functions. Molecular Genetics and Metabolism, 2014, vol. 112, no. 1, pp. 73-83. https://doi.org/10.1016/j.ymgme.2013.12.006

22. Satuluri V. S. A. K., Seelam J., Gupta S. P. A quantitative structure-activity relationship study on some series of potassium channel blockers. Medicinal Chemistry, 2009, vol. 5, no. 1, pp. 87-92. https://doi.org/10.2174/157340609787049244

23. Tzchori I., Day T. F., Carolan P. J., Zhao Y., Wassif C. A., Li L., Lewandoski M., Gorivodsky M., Love P. E., Porter F. D., Westphal H., Yang Y. LIM homeobox transcription factors integrate signaling events that control three-dimensional limb patterning and growth. Development, 2009, vol. 136, no. 8, pp. 1375-1385. https://doi.org/10.1242/dev.026476

24. Stogios P. J., Downs G. S., Jauhal J. J. S., Nandra S. K., Privé G. G. Sequence and structural analysis of BTB domain proteins. Genome Biology, 2005, vol. 6, no. 10, p. R82. https://doi.org/10.1186/gb-2005-6-10-r82

25. Jiang B., Moskovitz J. The functions of the mammalian methionine sulfoxide reductase system and related diseases. Antioxidants, 2018, vol. 7, no. 9, art. 122. https://doi.org/10.3390/antiox7090122

26. Celi P. The role of oxidative stress in small ruminants’ health and production. Revista Brasileira de Zootecnia, 2010, vol. 39, suppl. spec., pp. 348-363. https://doi.org/10.1590/S1516-35982010001300038

27. Ponnampalam E. N., Hopkins D. L., Giri K., Jacobs J. L., Plozza T., Lewandowski P., Bekhit A. The use of oxidative stress biomarkers in live animals (in vivo) to predict meat quality deterioration postmortem (in vitro) caused by changes in muscle biochemical components. Journal of Animal Science, 2017, vol. 95, no. 7, pp. 3012-3024. https://doi.org/10.2527/jas.2016.0887

28. Mizumoto S., Yamada S., Sugahara K. Molecular interactions between chondroitin-dermatan sulfate and growth factors/receptors/matrix proteins. Current Opinion in Structural Biology, 2015, vol. 34, pp. 35-42. https://doi.org/10.1016/j.sbi.2015.06.004

29. Kaneko T., Joshi R., Feller S. M., Li S. S. Phosphotyrosine recognition domains: the typical, the atypical and the versatile. Cell Communication and Signaling, 2012, vol. 10, no. 1, art. 32. https://doi.org/10.1186/1478-811X-10-32

30. Greene M., Lai Y., Pajcini K., Bailis W., Pear W. S., Lancaster E. Delta/Notch-Like EGF-Related Receptor (DNER) is not a notch ligand. PLoS ONE, 2016, vol. 11, no. 9, p. e0161157. https://doi.org/10.1371/journal.pone.0161157


Review

Views: 714


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1817-7204 (Print)
ISSN 1817-7239 (Online)