1. Genomic selection and its application in animal breeding / F. Ibtisham [et al.] // Thai J. of Veterinary Medicine. - 2017. - Vol. 47, N 3. - P. 301-310.
2. Georges, M. Harnessing genomic information for livestock improvement / M. Georges, C. Charlier, B. Hayes // Nature Rev. Genetics. - 2019. - Vol. 20, N 3. - P. 135-156. https://doi.org/10.1038/s41576-018-0082-2
3. Meuwissen, T. Genomic selection: A paradigm shift in animal breeding / T. Meuwissen, B. Hayes, M. Goddard // Animal Frontiers. - 2016. - Vol. 6, N 1. - P. 6-14. https://doi.org/10.2527/af.2016-0002
4. Advances in genomic strategies to improve growth and meat production traits in sheep: an overview / A.R. Sahu [et al.] // Ind. J. of Small Ruminants. - 2017. - Vol. 23, N 2. - P. 139-147. https://doi.org/10.5958/0973-9718.2017.00052.6
5. Genome-wide association study to identify genomic regions affecting prolificacy in Lori-Bakhtiari sheep / R. Abdoli [et al.] // Animal Genetics. - 2018. - Vol. 49, N 5. - P. 488-491. - https://doi.org/10.1111/age.12700
6. Benavides, M.V. How efficiently Genome-Wide Association Studies (GWAS) identify prolificity-determining genes in sheep / M. V. Benavides, C.J. H. Souza, J.C. F. Moraes // Genetics a. Molecular Research. - 2018. - Vol. 17, N 2. - P. 9-14. https://doi.org/10.4238/gmr16039909
7. Miller, J. M. Genomic analysis of morphometric traits in bighorn sheep using the Ovine Infinium® HD SNP BeadChip / J.M. Miller, M. Festa-Bianchet, D.W. Coltman // PeerJ. - 2018. - Vol. 6, N 2. - P. e4364. https://doi.org/10.7717/peerj.4364
8. Combined GWAS and ‘guilt by association’-based prioritization analysis identifies functional candidate genes for body size in sheep / A. Kominakis [et al.] // Genetics Selection Evolution. - 2017. - Vol. 49, N 41. - Art. 41. https://doi.org/10.1186/s12711-017-0316-3
9. Мильчевский, В.Д. Подбор пар родителей в овцеводстве [Электронный ресурс] / В.Д. Мильчевский // Аэкономика: экономика и сел. хоз-во. - 2018. - Т. 27, № 3. - Режим доступа: https://aeconomy.ru/news/agro/podborpar-roditeley-v-ovtsevodstve.html. - Дата доступа: 11.01.2020.
10. Genomic selection in dairy cattle simulated populations / L. O. Seno [et al.] // J. of Dairy Research. - 2018. - Vol. 85, N 2. - P. 125-132. https://doi.org/10.1017/S0022029918000304
11. Weller, J.I. Invited review: A perspective on the future of genomic selection in dairy cattle / J.I. Weller, E. Ezra, M. Ron // J. of Dairy Science. - 2017. - Vol. 100, N 11. - P. 8633-8644. https://doi.org/10.3168/jds.2017-12879
12. The effects of the myostatin g+6723G>A mutation on carcass and meat quality of lamb / M. Hope [et al.] // Meat Science. - 2013. - Vol. 95, N 1. - P. 118-122. https://doi.org/10.1016/j.meatsci.2013.03.029
13. Single nucleotide polymorphisms in an intron of the ovine calpastatin gene / B.R. Palmer [et al.] // Animal Biotechnology. - 2000. - Vol. 11, N 1. - P. 63-67. https://doi.org/10.1080/10495390009525948
14. Van der Werf, J. H. J. Marker-assisted aelection in aheep and goats / J. H. J. Van der Werf // Marker-assisted selection: current status and future perspectives in crops, livestock, forestry and fish / ed.: E. Guimaraes [et al.] ; FAO. - Rome, 2007. - Chap. 13. - P. 229-247.
15. Evidence for multiple alleles effecting muscling and fatness at the Ovine GDF8 locus / J.W. Kijas [et al.] // BMC Genetics. - 2007. - Vol. 8, N 1. - Art. 80. https://doi.org/10.1186/1471-2156-8-80
16. Gholizadeh, M. Genomewide association study of body weight traits in Baluchi sheep / M. Gholizadeh, G. RahimiMianji, A. Nejati-Javaremi // J. of Genetics. - 2015. - Vol. 94, N 1. - P. 143-146. https://doi.org/10.1007/s12041-015-0469-1
17. Ценный мировой генофонд овец - романовская порода / М.М. Коренев [и др.] // Овцы, козы, шерстяное дело. - 2017. - № 3. - С. 2-5.
18. Состояние и перспективы романовского овцеводства в России / Н.С. Фураева [и др.] // Овцы, козы, шерстяное дело. - 2015. - № 1. - С. 6-9.
19. PLINK: a tool set for whole-genome association and population-based linkage analyses / S. Purcell [et al.] // Amer. J. of Human Genetics. - 2007. - Vol. 81, N 3. - P. 559-575. https://doi.org/10.1086/519795
20. Latent TGF-β-binding proteins / I.B. Robertson [et al.] // Matrix Biology. - 2015. - Vol. 47. - P. 44-53. https://doi.org/10.1016/j.matbio.2015.05.005
21. Transcriptional profiling of the human fibrillin/LTBP gene family, key regulators of mesenchymal cell functions / M.R. Davis [et al.] // Molecular Genetics a. Metabolism. - 2014. - Vol. 112, N 1. - P. 73-83. https://doi.org/10.1016/j.ymgme.2013.12.006
22. Satuluri, V. S. A. K. A quantitative structure-activity relationship study on some series of potassium channel blockers / V. S. A. K. Satuluri, J. Seelam, S. P. Gupta // Medicinal Chemistry. - 2009. - Vol. 5, N 1. - P. 87-92. https://doi.org/10.2174/157340609787049244
23. LIM homeobox transcription factors integrate signaling events that control three-dimensional limb patterning and growth / I. Tzchori [et al.] // Development. - 2009. - Vol. 136, N 8. - P. 1375-1385. https://doi.org/10.1242/dev.026476
24. Sequence and structural analysis of BTB domain proteins / P.J. Stogios [et al.] // Genome Biology. - 2005. - Vol. 6, N 10. - P. R82. https://doi.org/10.1186/gb-2005-6-10-r82
25. Jiang, B. The functions of the mammalian methionine sulfoxide reductase system and related diseases / B. Jiang, J. Moskovitz // Antioxidants. - 2018. - Vol. 7, N 9. - Art. 122. - https://doi.org/10.3390/antiox7090122
26. Celi, P. The role of oxidative stress in small ruminants’ health and production / P. Celi // Rev. Brasileira de Zootecnia. - 2010. - Vol. 39, suppl. spec. - P. 348-363. https://doi.org/10.1590/S1516-35982010001300038
27. The use of oxidative stress biomarkers in live animals (in vivo) to predict meat quality deterioration postmortem (in vitro) caused by changes in muscle biochemical components / E. N. Ponnampalam [et al.] // J. of Animal Science. - 2017. - Vol. 95, N 7. - P. 3012-3024. - https://doi.org/10.2527/jas.2016.0887
28. Mizumoto, S. Molecular interactions between chondroitin-dermatan sulfate and growth factors/receptors/matrix proteins / S. Mizumoto, S. Yamada, K. Sugahara // Current Opinion in Structural Biology. - 2015. - Vol. 34. - P. 35-42. https://doi.org/10.1016/j.sbi.2015.06.004
29. Phosphotyrosine recognition domains: the typical, the atypical and the versatile / T. Kaneko [et al.] // Cell Communication a. Signaling. - 2012. - Vol. 10, N 1. - Art. 32. https://doi.org/10.1186/1478-811X-10-32
30. Delta/Notch-Like EGF-Related Receptor (DNER) is not a notch ligand / M. Greene [et al.] // PLoS ONE. - 2016. - Vol. 11, N 9. - P. e0161157. https://doi.org/10.1371/journal.pone.0161157