Preview

Proceedings of the National Academy of Sciences of Belarus. Agrarian Series

Advanced search

Obtaining potato microtubers in a liquid nutrient medium

https://doi.org/10.29235/1817-7204-2020-58-4-432-442

Abstract

Obtaining virus-free potato seed material in Kazakhstan is mainly carried out using the method of isolation of apical meristems with the subsequent production of test-tube plants from them on an agar nutrient medium and the further formation of minitubers in greenhouse. Obtaining microtubers from meristem plants in production of potato seed material in vitro is not carried out, although this method is one of the most successful methods for increasing the potato material in vitro. Based on the above issue, we’ve set a goal to optimize the MS liquid nutrient medium for obtaining potato microtubers in vitro from meristem plants with the prospect of introducing this procedure into the process of obtaining seed material at seed farms. The paper presents new data applicable at the initial stages of potato seed production, for production of the first tuberous generation of healthy material, in particular, for replication of plants in vitro and production of microtubers. The results are presented on analysis of morphometric data of plant development in vitro obtained at cultivation of single-bud potato cuttings on ten variants of the Murashige-Skuga liquid medium with various combinations of sucrose concentrations (20 and 30 g/l), kinetin (0,2 and 4 mg/l), gibberellic acid (0, 0,5 and 1 mg/l) in 220 ml glass vessels. The perfect liquid nutrient medium for obtaining developed potato plants in vitro for further production of microtubers has been defined. Efficiency of liquid nutrient medium for obtaining potato microtubers has been determined when growing plants in vitro USING media with various combinations of concentrations of sucrose (60 and 90 g/l), kinetin (0 and 2 mg/l) and 6-benzylaminopurine (0 and 5 mg/l). The results of the study can form the basis for cultivation of plants in a bioreactor with the purpose of mass production of virus-free potato microtubers.

About the Authors

D. V. Volkov
Institute of Plant Biology and Biotechnology, Committee of Science of the Ministry of Education and Sciences of the Republic of Kazakhstan
Kazakhstan

Dmitriy V. Volkov – M.S. (Biological)

45 Timiryazev Str., 050040, Almaty, Kazakhstan



D. L. Daurov
Institute of Plant Biology and Biotechnology, Committee of Science of the Ministry of Education and Sciences of the Republic of Kazakhstan
Kazakhstan

Dias L. Daurov –M.S. (Engineering)

45 Timiryazev Str., 050040, Almaty, Kazakhstan



A. K. Daurova
Institute of Plant Biology and Biotechnology, Committee of Science of the Ministry of Education and Sciences of the Republic of Kazakhstan
Kazakhstan

Ainash K. Daurova – M.S. (Agricultural)

45 Timiryazev Str., 050040, Almaty, Kazakhstan



Zh. S. Abay
Institute of Plant Biology and Biotechnology, Committee of Science of the Ministry of Education and Sciences of the Republic of Kazakhstan
Kazakhstan

Zhandos S. Abay – B.Sc. (Engineering)

45 Timiryazev Str., 050040, Almaty, Kazakhstan



K. K. Zhapar
Institute of Plant Biology and Biotechnology, Committee of Science of the Ministry of Education and Sciences of the Republic of Kazakhstan
Kazakhstan

Kuanysh K. Zhapar – M.S. (Biological)

45 Timiryazev Str., 050040, Almaty, Kazakhstan



K. Zh. Zhambakin
Institute of Plant Biology and Biotechnology, Committee of Science of the Ministry of Education and Sciences of the Republic of Kazakhstan
Kazakhstan

Kabl Zh. Zhambakin – Academician, D.Sc. (Biological), Professor

45 Timiryazev Str., 050040, Almaty, Kazakhstan



M. Kh. Shamekova
Institute of Plant Biology and Biotechnology, Committee of Science of the Ministry of Education and Sciences of the Republic of Kazakhstan
Kazakhstan

Malika Kh. Shamekova – Associate professor, Ph.D. (Philosophy) uage: AR-SA'>(Engineering)

45 Timiryazev Str., 050040, Almaty, Kazakhstan



References

1. Reddy B. J., Mandal R., Chakroborty M., Hijam L., Dutta P. A review on potato (Solanum tuberosum L.) and its genetic diversity. International Journal of Genetics, 2018, vol. 10, no. 2, pp. 360-364. https://doi.org/doi:10.9735/09752862.10.2.360-364

2. Muthoni J., Shimelis H., Melis R. Alleviating potato seed tuber shortage in developing countries: Potential of true potato seeds. Australian Journal of Crop Science, 2013, vol. 7, no. 12, pp. 1946-1954.

3. Kureichik N. A., Zaboronok I. M., Sokol S. V, Zhiveto L. K. Methods for increasing the productivity of potatoes in nurseries of original seed production. Kartofelevodstvo: sbornik nauchnykh trudov [Potato growing: collection of scientific papers]. Minsk, 2013, iss. 21, pt. 2, pp. 72-80 (in Russian).

4. Jones E. D. A current assessment of in vitro culture and other rapid multiplication methods in North America and Europe. American Potato Journal, 1988, vol. 65, no. 4, pp. 209-220. https://doi.org/10.1007/BF02854453

5. Yu W. C., Joyce P. J., Cameron D. C., McCown B. H. Sucrose utilization during potato micro tuber growth in bioreactors. Plant Cell Reports, 2000, vol. 19, no. 4, pp. 407-413. https://doi.org/10.1007/s002990050748

6. Rosell G., De Bertoldi F. G., Tibia R. In vitro mass tuberization as a contribution to potato micropropagation. Potato Research, 1987, vol. 30 no. 1, pp. 111-116. https://doi.org/10.1007/s10535-017-0715-x

7. Anisimov B. V., Smolegovets D. V., Smolegovets V. M., Gur’ev A. V. Innovations in the system of potato clonal micro-reproduction. Kartofel’ i ovoshchi = Potato and Vegetables, 2008, no. 4, pp. 26–27 (in Russian).

8. Anisimov B. V., Smolegovets D. V., Shatilova O. N. Recommendations for the technology of in vitro cultivation of microtubers and their use in the process of original seed production. Moscow, All-Russian Research Institute of Potato Production, 2009. 21 p. (in Russian).

9. Oves E. V., Kolesova O. S., Fenina N. A. In vitro cultivation of microtubers using container technology. Sovremennaya industriya kartofelya: sostoyanie i perspektivy razvitiya: materialy VI mezhregional’noi nauchno-prakticheskoi konferentsii [Modern potato industry: state and development prospects: proceedings of the VI interregional scientific and practical conference]. Cheboksary, 2014, pp. 111–115 (in Russian).

10. Mahdi E. F., Hamad M., Al-Saad S., Sakina M. A. I. In vitro tuberization of potato cultivars as influenced by photoperiod, exogenous sucrose and cytokinin concentrations. Journal of the Saudi Society of Agricultural Sciences, 2004, vol. 17, no. 1, pp. 25-35.

11. Kanwal A., Ali A., Shoaib K. In vitro microtuberization of potato (Solanum tubersoum L.) cultivar Kuroda – a new variety in Pakistan. International Journal of Agricultural and Biological Engineering, 2006, vol. 8, no. 3, pp. 337-340.

12. Hussain I., Chaudhry Z., Muhammad A., Asghar R., Naqvi S. M. S., Rashid H. Effect of chlorocholine chloride, sucrose and BAP on in vitro tuberization in potato (Solanum tuberosum L. cv.Cardinal). Pakistan Journal of Botany, 2006, vol. 38, no. 2, pp. 275-282.

13. Imani A. A., Qhrmanzadeh R., Azimi J., Janpoor J. The effect of various concentrations of 6-benzylaminopurine (BAP) and sucrose on in vitro potato (Solanum tuberosum L.) microtuber induction. American-Eurasian Journal of Agricultural and Environmental Sciences, 2010, vol. 8, no. 4, pp. 457-459.

14. Fufa M., Diro M. Microtuber induction of two potato (Solanum tuberosum L.) varieties. Advances in Crop Science and Technology, 2014, vol. 2, no. 2, pp. 1-4. https://doi.org/10.4172/2329-8863.1000122

15. Nhut D. T., Nguyen N. H., Thuy D. T. T. A novel in vitro hydroponic culture system for potato (Solanum tuberosum L.) microtuber production. Scientia Horticulturae, 2006, vol. 110, no. 3, pp. 230-234. https://doi.org/10.1016/j.scienta.2006.07.027

16. Rahman Md. Z., Shahinul S. M., Chowdhury A. N., Subramanian S. Efficient microtuber production of potato in modified nutrient spray bioreactor system. Scientia Horticulturae, 2015, vol. 192, pp. 369-374. https://doi.org/10.1016/j.scienta.2015.06.014

17. Jova M. C., Pérez M. B., Pino A. S., Vega V. M., Torres J. L., Cabrera A. R., García M. G., DeVentura J. L. C., Kosky R. G. Production of yam microtubers using a temporary immersion system. Plant Cell, Tissue and Organ Culture, 2005, vol. 83, no. 1, pp. 103-107. https://doi.org/10.1007/s11240-005-4853-z

18. Estrada R., Tovar P., Dodds J. H. Induction of in vitro tubers in a broad range of potato genotypes. Plant Cell, Tissue and Organ Culture, 1986, vol. 7, no. 1, pp. 3-10. https://doi.org/10.1007/BF00043915

19. Piao X. C., Chakrabarty D., Hahn E. J., Paek K. Y. A simple method for mass production of potato microtubers using a bioreactor system. Current Science, 2003, vol. 84, no. 8, pp. 1129-1132.

20. Akita M., Takayama S. Stimulation of potato (Solanum tuberosum L.) tuberization by semicontinous liquid medium surface level control. Plant Cell Reports, 1994, vol. 13, no. 3-4, pp. 184-187. https://doi.org/10.1007/bf00239889

21. Ebadi M., Iranbakhsh A., Khaniki G. B. Shoot micropropagation and microtuberization in potato (Solanum tuberosum L.) by the semi-continuous bioreactor. Pakistan Journal of Biological Sciences, 2007, vol. 10, no. 6, pp. 861-867. https:// doi.org/10.3923/pjbs.2007.861.867

22. Perez N. M., Restrepo D. C., Garcia J. D., Giraldo D. R. In vitro tuberization of potato (Solanum tuberosum L.) variety Diacol Capiro in temporary immersion bioreactors and grow evaluation in field. Ciencia, 2008, vol. 16, no. 3, pp. 288-295.

23. Alix M. J., Savvides S., Blake J., Herrmann R., Hornung R. Effects of illumination source, culture, ventilation, and sucrose on potato (Solanum tuberosum) microtuber production under short days. Annals of Applied Biology, 2001, vol. 139, no. 2, pp. 175-187. https://doi.org/10.1111/j.1744-7348.2001.tb00394.x

24. Kämäräinen-Karppinen T., Virtanen E., Rokka V.M., Pirttilä A. M. Novel bioreactor technology for mass propagation of potato microtubers. Plant Cell, Tissue and Organ Culture, 2010, vol. 101, no. 2, pp. 245-249. doi: 10.1007/s11240-010-9679-7

25. Murashige T., Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 1962, vol. 15, no. 3, pp. 473-497. doi: 10.1111/j.1399-3054.1962.tb08052.x

26. Ewing E. E. The role of hormones in potato (Solanum tuberosum L.) tuberization. Plant Hormones: physiology, biochemistry, and molecular biology. Dordrecht, Boston, 1995, pp. 698-724. https://doi.org/10.1007/978-94-011-0473-9_32

27. Palmer C. E., Smith O. E. Effect of kinetin on tuber formation on isolated stolons of Solanum tuberosum L. cultured in vitro. Plant and Cell Physiology, 1970, vol. 11, no. 2, pp. 303-314. https://doi.org/10.1093/oxfordjournals.pcp.a074511

28. Zakaria M., Hossain M. M., Khaleque Mian M. A., Hossain T. Performance of different protocols on in vitro tuberization in potato (Solanum tuberosum). Bangladesh Journal of Agricultural Research, 2014, vol. 39, no. 1, pp. 59-66. https:// doi.org/10.3329/bjar.v39i1.20143

29. Ali S., Khan N., Nouroz F., Erum S., Jatoi W. Effects of sucrose and growth regulators on the microtuberization of potato germplasm. Pakistan Journal of Botany, 2018, vol. 50, no. 2, pp. 763-768.

30. Aksenova N. P., Konstantinova T. N., Golyanovskaya S. A., Kossmann J., Willmitzer L., Romanov G. A. Transformed potato plants as a model for studying the hormonal and carbohydrate regulation of tuberization. Russian Journal of Plant Physiology, 2000, vol. 47, no. 3, pp. 370-379.

31. Romanov G. A., Aksenova N. P., Konstantinova T. N., Golyanovskaya S. A., Kossmann J., Willmitzer L. Effect of indole-3-acetic acid and kinetin on tuberization parameters of different cultivars and transgenic lines of potato in vitro. Plant Growth Regulation, 2000, vol. 32, no. 2-3, pp. 245-251. https://doi.org/10.1023/A:1010771510526

32. Dodds J. H., Silva-Rodriguez D., Tovar P. Micropropagation of potato (Solanum tuberosum L.). High-tech and micropropagation III. Biotechnology in agriculture and forestry, vol. 19. Berlin, Heidelberg, 1992, pp. 91-106. https://doi.org/10.1007/978-3-662-07770-2_6

33. Khuri S., Moorby J. Investigation into the role of sucrose in potato cv. Estima microtuber production in vitro. Annals of Botany, 1995, vol. 75, no. 3, pp. 295-303. https://doi.org/10.1006/anbo.1995.1024

34. Abbott A. J., Belcher A. R. Potato tuber formation in vitro. Plant tissue culture and its agricultural applications. London, 1986, pp. 113–122.

35. Garner N., Blake J. The induction and development of potato microtubers in vitro on media free of growth regulating substances. Annals of Botany, 1989, vol. 63, no. 6, pp. 663-674. https://doi.org/10.1093/oxfordjournals.aob.a087795

36. Hussey G., Stacey N. J. Factors affecting the formation of in vitro tubers of potato (Solanum tuberosum L.). Annals of Botany, 1984, vol. 53, no. 4, pp. 565-578. https://doi.org/10.1093/oxfordjournals.aob.a086720

37. Lawrence C. H., Barker W. G. A study of tuberization in the potato, Solanum tuberosum. American Potato Journal, 1963, vol. 40, no. 10, pp. 349-356. https://doi.org/10.1007/bf02862742

38. Fatima B., Usman M., Ahmad I., Khan I. Effect of explant and sucrose on microtuber induction in potato cultivars. International Journal of Agriculture and Biology, 2005, vol. 7, no. 1, pp. 63-66.

39. Rahman M. H., Islam R., Hossain M., Islam M. S. Role of sucrose, glucose and maltose on conventional potato micropropagation. Journal of Agricultural Technology, 2010, vol. 6, no. 4, pp. 733-739.

40. Sarkar D., Pandey S., Sharma S. Cytokinins antagonize the jasmonates action on the regulation of potato (Solanum tuberosum) tuber formation in vitro. Plant Cell, Tissue and Organ Culture, 2006, vol. 87, no. 3, pp. 285-295. https://doi.org/10.1007/s11240-006-9166-3


Review

Views: 936


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1817-7204 (Print)
ISSN 1817-7239 (Online)