1. Myslyva T. N., Kolmykov A. V., Drugakov P. V. The production potential of agricultural lands of agricultural organizations of Mogilev region and its rational use. Vestnik Belorusskoi gosudarstvennoi sel’skokhozyaistvennoi akademii = Bulletin of the Belarussian State Agricultural Academy, 2016, no. 4, pp. 81-88 (in Ruissian).
2. Il’ina Z. M. National food safety and person safety. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya agrarnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Agrarian series, 2004, no. 4, pp. 15-20 (in Russian).
3. Shakirin A. I., L’vova O. M., Bogdanovich A. I., Gorokhovik Ya.V. Yield forecasting of agricultural crops: prospects for use of artificial neural networks. Pererabotka i upravlenie kachestvom sel’skokhozyaistvennoi produktsii: sbornik statei III Mezhdunarodnoi nauchno-prakticheskoi konferentsii, Minsk, 23-24 marta 2017 g. [Processing and quality management of agricultural products: a collection of articles of the III international scientific and practical conference, Minsk, March 23-24, 2017]. Minsk, 2017, pp. 248-250 (in Russian).
4. Savin I. Yu., Bartalev S. A., Lupyan E. A., Tolpin V. A., Khvostikov S. A. Crop yield forecasting based on satellite data: opportunities and perspectives. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa = Current Problems in Remote Sensing og the Earth from Space, 2010, vol. 7, no. 3, pp. 275-285 (in Russian).
5. Trenz O., Šťastný J., Konečný V. Agricultural data prediction by means of neural network. Agricultural Economics, 2011, vol. 57, no. 7, pp. 356-361. https://doi.org/10.17221/108/2011-agricecon
6. Manjula E., Djodiltachoumy S. A model for prediction of crop yield. International Journal of Computational Intelligence and Informatics, 2017, vol. 6, no. 4, pp. 298-305.
7. Ghosh S., Koley S. Machine learning for soil fertility and plant nutrient management. International Journal on Recent and Innovation Trends in Computing, 2014, vol. 2, no. 2, pp. 292-297.
8. Crane-Droesch A. Machine learning methods for crop yield prediction and climate change impact assessment in agriculture. Environmental Research Letters, 2018, vol. 13, no. 11, art. 114003. https://doi.org/10.1088/1748-9326/aae159
9. Khaki S., Wang L. Crop yield prediction using deep neural networks. Frontiers in Plant Science, 2019, vol. 10, art. 621. https://doi.org/10.3389/fpls.2019.00621
10. Liakos K. G., Busato P., Moshou D., Pearson S., Bochtis D. Machine learning in agriculture: a review. Sensors, 2018, vol. 18, no. 8, art. 2674. https://doi.org/10.3390/s18082674
11. Petersen L. K. Real-time prediction of crop yields from MODISr elative vegetation health: a continent-wide analysis of Africa. Remote Sensing, 2018, vol. 10, no. 11, art. 1726. https://doi.org/10.3390/rs10111726
12. Doraiswamy P. C., Moulin S., Cook P. W., Stern A. Crop yield assessment from remote sensing. Photogrammetric Engineering and Remote Sensing, 2003, vol. 69, no. 6, pp. 665-674. https://doi.org/10.14358/pers.69.6.665
13. Ennouri K., Kallel A. Remote sensing: an advanced technique for crop condition assessment. Mathematical Problems in Engineering, 2019, vol. 2019, pp. 1-8. https://doi.org/10.1155/2019/9404565
14. Leroux L., Baron C., Zoungrana B., Traore S. B., Lo Seen D., Begue A. Crop monitoring using vegetation and thermal indices for yield estimates: case study of a rainfed cereal in semi-arid West Africa. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, vol. 9, no. 1, pp. 347-362. https://doi.org/10.1109/jstars.2015.2501343
15. Vadrevu K. P., Dadhwal V. K., Gutman G., Justice C. Remote sensing of agriculture - South/Southeast Asia research initiative special issue. International Journal of Remote Sensing, 2019, vol. 40, no. 21, pp. 8071-8075. https://doi.org/10.1080/01431161.2019.1617507
16. Insua J. R., Utsumi S. A., Basso B. Estimation of spatial and temporal variability of pasture growth and digestibility in grazing rotations coupling unmanned aerial vehicle (UAV) with crop simulation models. PLoS ONE, 2019, vol. 14, no. 3, p. e0212773. https://doi.org/10.1371/journal.pone.0212773
17. Wachendorf M., Fricke T., Möckel T. Remote sensing as a tool to assess botanical composition, structure, quantity and quality of temperate grasslands. Grass Forage Science, 2018, vol. 73, no. 1, pp. 1-14. https://doi.org/10.1111/gfs.12312
18. Bartalev S. A., Belward A. S., Erchov D. V., Isaev A. S. A new SPOT4-vegetation derived land cover map of Northern Eurasia. International Journal of Remote Sensing, 2003, vol. 24, no. 9, pp. 1977-1982. https://doi.org/10.1080/0143116031000066297
19. Stepanov A. S. Forecasting of crop yields based on Earth remote sensing data (using soybeans as an example). Vychislitel’nye tekhnologii = Computational Technologies, 2019, vol. 24, no. 6, pp. 125-133. https://doi.org/10.25743/ICT.2019.24.6.015
20. Bryksin V. M., Evtyushkin A. V., Rychkova N. V. Forecasting of grain crops productivity on basis of the remote sounding data and bio-productivity modeling. Izvestiya Altaiskogo gosudarstvennogo universiteta = Izvestiya of Altai State University, 2010, no. 1-2 (65), pp. 89-93 (in Russian).
21. Matis J. H., Saito T., Grant W. E., Iwig W. C., Ritchie J. T. A Markov chain approach to crop yield forecasting. Agricultural Systems, 1985, vol. 18, no. 3, pp. 171-187. https://doi.org/10.1016/0308-521x(85)90030-7
22. Newlands N. K., Zamar D. S., Kouadio L. A., Zhang Y., Chipanshi A., Potgieter A., Toure S., Hill H. S. J. An integrated, probabilistic model for improved seasonal forecasting of agricultural crop yield under environmental uncertainty. Frontiers in Environmental Science, 2014, vol. 2, art. 17. https://doi.org/10.3389/fenvs.2014.00017
23. Li B., Zhu X. Forecast of maize production in Henan province. American Journal of Plant Sciences, 2018, vol. 9, no. 11, pp. 2276-2286. https://doi.org/10.4236/ajps.2018.911164
24. Patel R. M., Goyal R. C., Ramasubramanian V., Marwaha S. Markov chain based crop forecast modeling software. Journal of the Indian Society of Agricultural Statistics, 2013, Vol. 67, no. 3, pp. 371-379.
25. Zhang R., Tang C., Ma S., Yuan H., Gao L., Fan W. Using Markov chains to analyze changes in wetland trends in arid Yinchuan Plain, China. Mathematical and Computer Modelling, 2011, vol. 54, no. 3-4, pp. 924-930. https://doi.org/10.1016/j.mcm.2010.11.017
26. Tian Y., Xia Y., Zhou L., Li D. Land use and cover change simulation and prediction in Hangzhou city based on CA-Markov model. International Proceedings of Chemical, Biological and Environmental Engineering, 2015, vol. 90, pp. 108-113. https://doi.org/10.7763/IPCBEE.2015.V90.17
27. Cherepanov A. S. Vegetation indices. Geomatika = Geomatics, 2011, no. 2, pp. 98-102 (in Russian).
28. Markov A. A. Extending the law of large numbers for variables that are dependent of each other. Izvestiya fiziko-matematicheskogo obshchestva pri Kazanskom universitete. Seriya 2 [Bulletin of the Physics and Mathematics Society of Kazan University. Series 2], 1906, vol. 15, pp. 135-156 (in Russian).